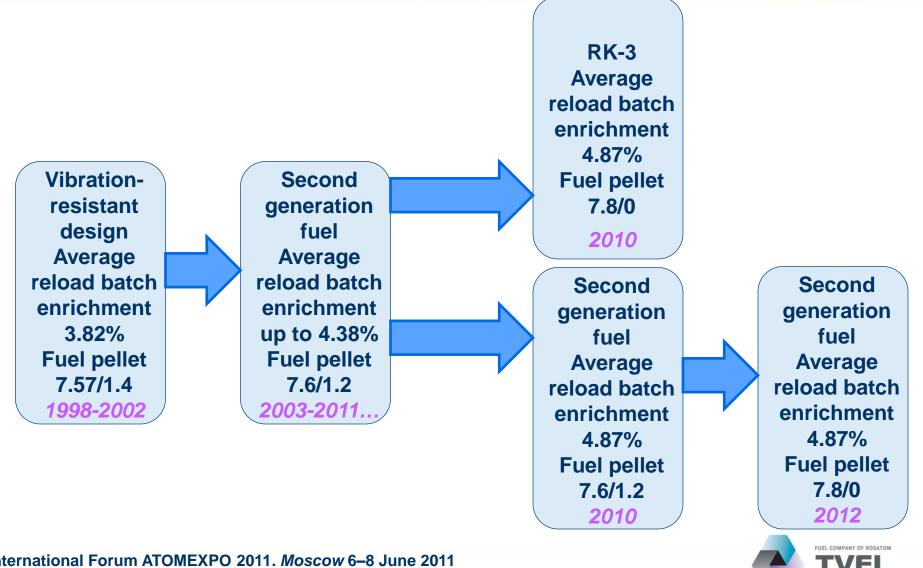


NEW TYPES OF NUCLEAR FUEL D. Krylov JSC "TVEL"

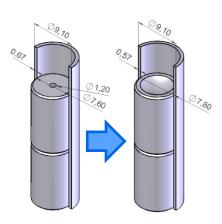
International Forum ATOMEXPO 2011 Moscow, 6–8 June 2011

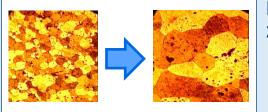


Main directions of development

- ✓ Improved operational reliability of FAs.
- ✓ Increased service life.
- ✓ Increased burnup.
- ✓ Dismountable and reparable design.
- ✓ FA development for new nuclear power units.

VVER-440 Nuclear Fuel




VVER-440 Nuclear Fuel

Second generation fuel Average enrichment 4.87% Fuel pellet 7.6/1.2 mm

6-year fuel cycle at a power level of 1471 MW(th) (107%).
Profiled fuel rod bundle, U-Gd fuel.
66 FAs in the reload batch.
Burnup of 65 MW·d/kgU.
Load follow operation.

In 2010, pilot operation of reload batch started at Kola NPP Unit 4.

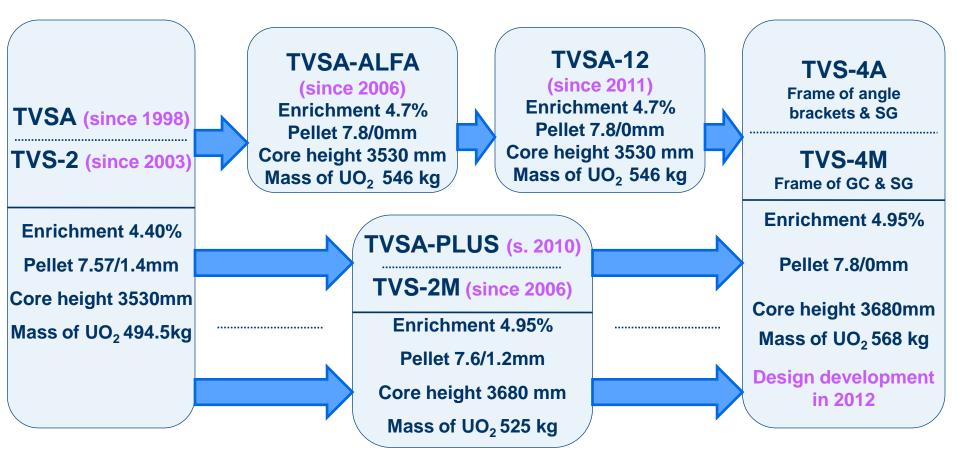
Second generation fuel Average enrichment 4.87% *Fuel pellet 7.8/0 mm*

6-year fuel cycle at a power level of 1540 MW(th) (112%). Profiled fuel rod bundle, U-Gd fuel. 60 FAs in the reload batch. Burnup of 65 MW·d/kgU. Load-follow operation.

Development of technical project in 2012

The expected benefit of implementation – about 15% reduction in the number of FAs in the reload batch (at 107% of nominal reactor power) The expected benefit of implementation – about 8% reduction in the number of FAs in the reload batch as compared to the second generation FAs with enrichment of 4.87% and pellets 7.6/1.2 mm

VVER-440 Nuclear Fuel

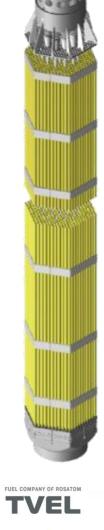

Third generation fuel assembly
(for second generation VVER-440 reactor)Design without the shroud tube based on a frame
of the angle brackets and pipesAverage 235 U enrichment – 4.87%.Fuel pellet 7.8/0 mm.Mass of UO₂ - 132 kg (increased by 4.5%).Fuel rod pitch – 12.6 mm.Number of FAs in reload batch – 60.Burnup – up to 68 MW·d/kgU.6-year fuel cycle at a power level of 1471 MW(th) (107%).Load follow operation.

Pilot batch operation (12 FAs) started at Kola NPP Unit 4 in 2010

The expected benefit of RK-3 implementation – about 10% reduction of reloaded FAs as compared to the second generation FAs with fuel enrichment of 4.87%

International Forum ATOMEXPO 2011. Moscow 6-8 June 2011

TVSA-PLUS / TVS-2M


TVS-2M are in operation at Balakovo and Rostov NPP TVSA-PLUS are in operation at Kalinin NPP Units 2, 3 and 4

New features:

- \checkmark unified fuel rod and FA bottom nozzle
- ✓ fuel column height of 3680 mm (increased by 150 mm), enrichment of 4.95%, pellet 7.6/1.2 mm
- ✓ debris filter
- ✓ dismountable and reparable design

Results of implementation provide:

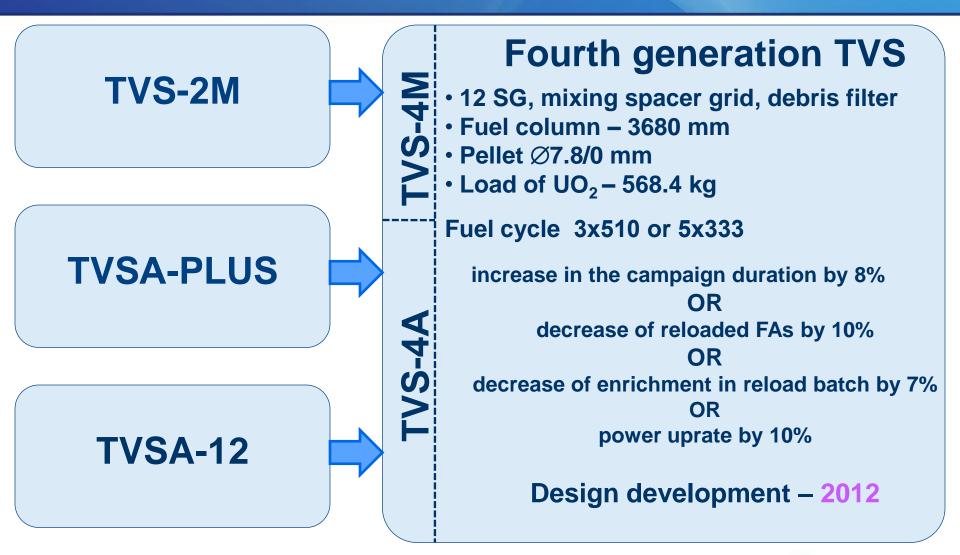
- ✓ power uprate up to 104% of nominal power
- ✓ 18-month fuel cycle (66 FAs in reload batch)
- ✓ burnup 65 MW·d/kgU
- ✓ load follow operation (100-75-100% N_{nom})
- ✓ FA protection from debris

TVSA-ALFA

- ✓ Fuel column height 3530 mm
- ✓ Pellet without central hole 7.8/0 mm
- \checkmark Mass of UO₂ in FA 546 kg
- ✓ 8 spacing grids
- ✓ Debris filter
- ✓ Dismountable and reparable design

Operated at Kalinin NPP Unit 1 since 2006

2. At one of the Ukrainian units – 2012


For 5-year fuel cycle

- Number of FAs in reload batch 36
- Burnup 65 MW·d/kgU

Possibility of operation in the fuel cycle of 3x(490-510) effective days

- Number of FAs in reload batch 66
- Burnup ~60 MW·d/kgU

VVER-1000 Nuclear Fuel TVSA-T for Temelin NPP Units 1&2

Main features

- ✓ Fuel column height of 3680 mm with blankets of 150 mm
- ✓ Fuel pellet 7.6/1.2 mm
- \checkmark Mass of UO₂ in FA 524.1 kg
- ✓ 8 spacing grids (including 6 mixing spacer grids)

Temelin-1

In October 2010, physical and power startup implemented with the core fully loaded with TVSA-T.

Temelin-2

Full load of the core with TVSA-T is scheduled for 2011.

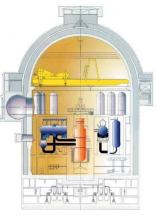
Development stages

Power uprate up to 104% (TVSA-T of basis design)	2012
Design optimization of TVSA-T (12 SG; 7.8/0 mm)	2014
Fuel cycle optimization (18-month)	2016

11

NPP-2006 Nuclear Fuel

Technical design of TVS-2006 was developed in 2010 in accordance with the requirements of TOR (phase 1): fuel cycle 3x18 months and 5x12 months, pellet 7.6/1.2 mm, maximum use of proven solutions


	VA	VALUE	
PARAMETER	VVER-1000	VVER-1200	
Reactor thermal power	3000	3200	
Coolant inlet temperature, °C	289.8	298.6	
Coolant outlet temperature, °C	319.6	329.7	
Maximum steam content, %	5	11.6	
FA height, mm	4570	4570	
Fuel column height, mm	3680	3730	
Fuel load in FA, kg	527	534	
Assigned service life of FA, ef. hours	40000	46000	
Maximum burnup for FA, MW·d/kgU	63.7	64.2	

Fuel supply to Unit 1 of Novovoronezh NPP-2 – December 2012

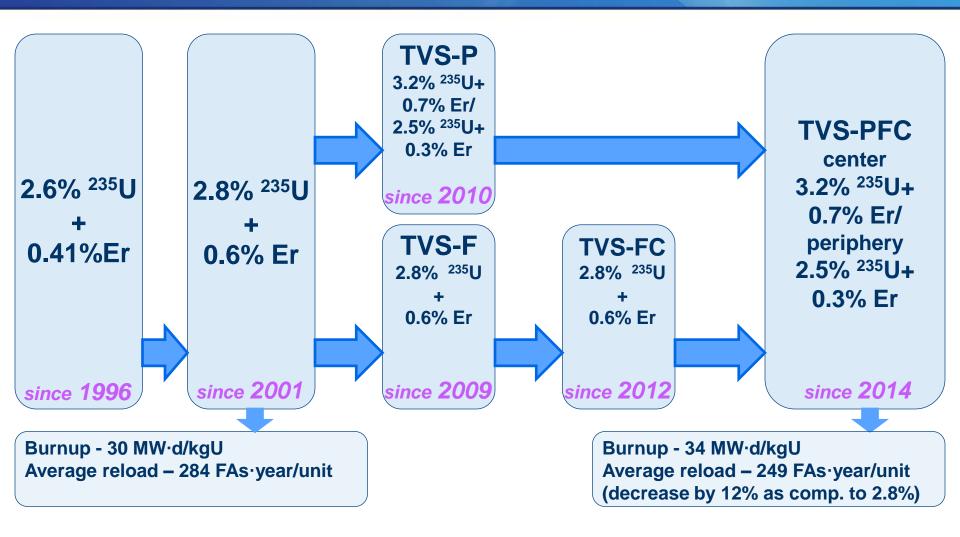
NPP-2006 Nuclear Fuel

Phase 2 tasks (2010-2012): to increase NPP technical and economic indicators based on the FA development potential including fuel cycles up to 24 months and increased burnup up to 70 MW·d/kg U

Main directions of R&D

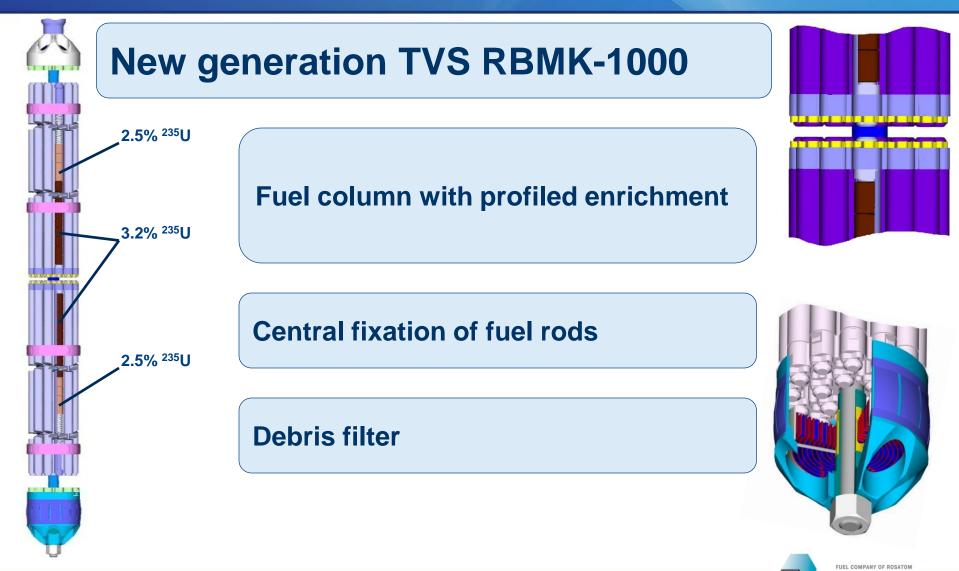
> Justification for increasing the fuel loading in FA based on fuel pellet 7.8/0 mm (increasing the duration of the campaign by 6%);

>Justification for introduction of heat exchange intensifiers in TVS-2006 (increasing power by 6-8%);

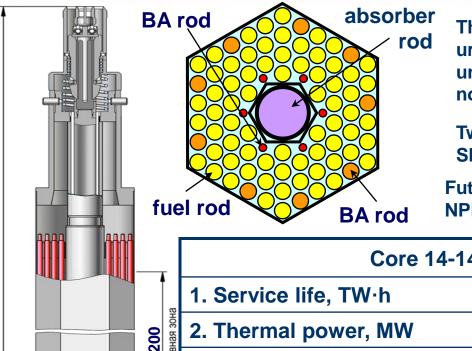

>Analysis of the effectiveness of uranium-erbium fuel cycles with increasing duration;

Analysis of the possibility to increase the enrichment above 5%;
 Introduction of advanced zirconium alloys;

➢Reduction of conservatism in the core justification (increasing power by 6-8%).



RBMK-1000 Nuclear Fuel



RBMK-1000 Nuclear Fuel

Fuel for floating NPP

The core based on the new cermet fuel with high uranium content was developed for floating NPP head unit KLT-40S. The fuel meets the requirements of the non-proliferation.

Two head cores 14-14 will be supplied to JSC Baltic Shipyard.

Future challenge – development of the core for floating NPP with an increased service life up to 3 TW·h

	Core 14-14 characteristics	Value
1	1. Service life, TW·h	2.1
1200 тивная зона	2. Thermal power, MW	150
12 Актив	3. Campaign duration, year	2.3
	4. Maximum fuel enrichment, %	15.7
	5. Uranium load, kg	1273
	6. Number of FAs in the core	121
	7. Average burnup of unloaded fuel, MW·d/kgU	46

Main conclusions

New generation FAs that have been developed and are operated now provide the following:

- ✤ High-power operation of NPP;
- Safe and reliable operation during 6 years (VVER) and 10 years (RBMK);
- Fuel burnup in FAs up to 35 MW·d/kgU (RBMK) and 65 MW·d/kgU (VVER);
- ♦ NPP operation in flexible fuel cycles;
- ✤ Load follow operation in the daily mode;
- ✤ Dismountable and reparable design.

Thank you for attention!

18

International Forum ATOMEXPO 2011. Moscow 6-8 June 2011