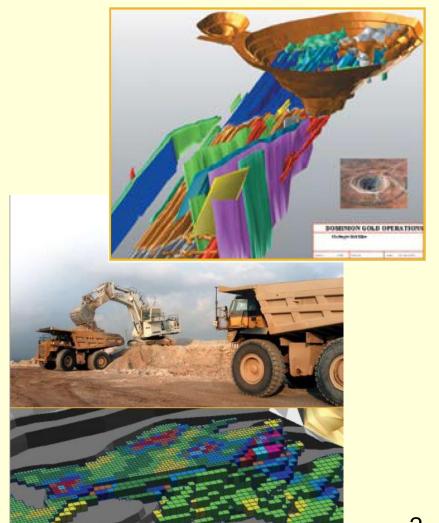
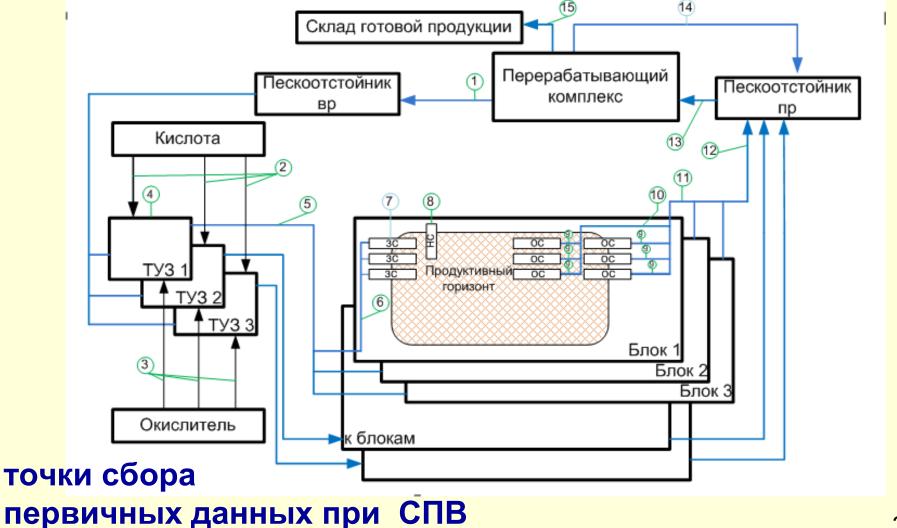


Северский технологический институт Национального исследовательского ядерного университета МИФИ


Инновационная интеллектуальная технология управления разработкой месторождения урана методом СПВ

Носков Михаил Дмитриевич д.ф.м.н., профессор, зам. руководителя по HP


Международный форум АТОМЭКСПО 2011 г. Москва 6–8 июня 2011 года
Круглый стол: «Новая технологическая платформа добычи урана геотехнологическими методами»

Информация является одним из важнейших ресурсов наряду с энергетическими, материальными, трудовыми, финансовыми

Происходящее в последнее десятилетие в технологически развитых странах внедрение систем управления, основанных на тотальной информатизации производства, дает предприятиям ощутимые конкурентные преимущества.

Особенно эффективно применение интеллектуальных технологий управления в условиях работы распределенных и сложных производств с высоким уровнем неопределенности информации и большим количеством потоков контекстно-зависимых данных.

Проблемы управления разработки месторождений методом СПВ

- •Недостаток данных о состоянии продуктивного горизонта и параметрах технологического процесса.
- •Невозможность непосредственного наблюдения за технологическим процессом.
- •Большое число различных нелинейно взаимосвязанных физико-химических процессов.
- •Ограниченные возможности воздействия на геотехнологический процесс в продуктивном горизонте.
- Длительный срок эксплуатации и большие размеры геотехнологической системы.
- Высока инерционность процесса (время реакции системы нескольких месяцев).

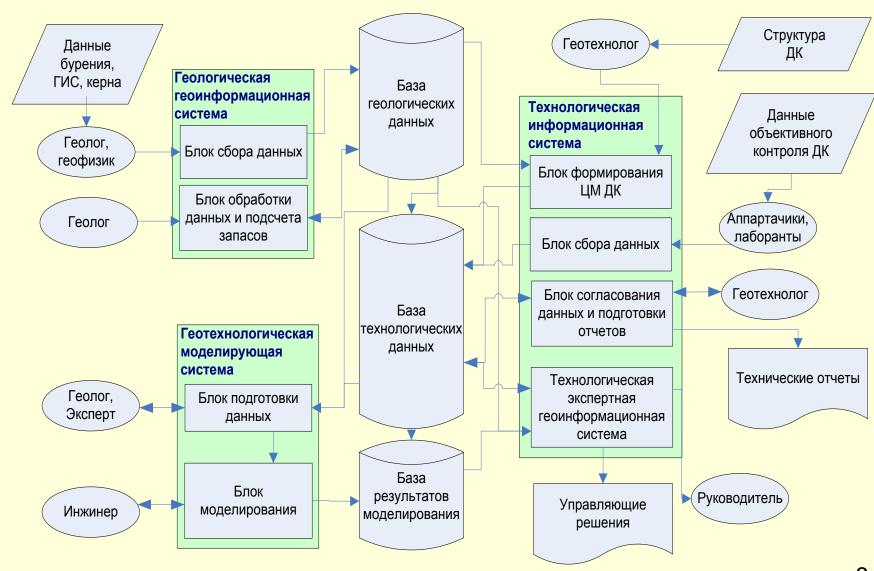
Решение

разработка и внедрение интеллектуальной технологии управления разработкой месторождения урана методом СПВ

Принципы построения:

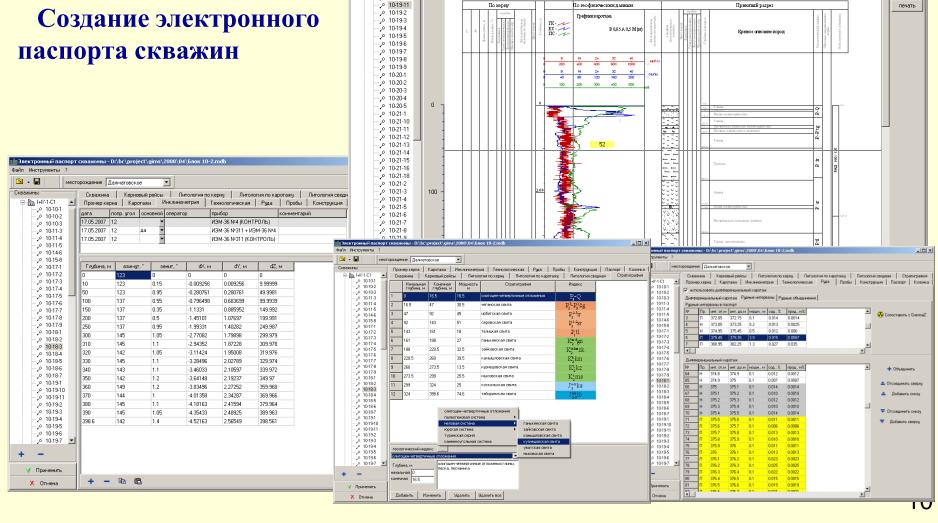
- •Системный подход
- •Обеспечение целостности и непротиворечивости информации
- •Открытость
- Масштабируемость
- •Модульность и расширяемость
- •Интегрированность

Принципы функционирования


- •Сохранение и передача информациии на всех этапах жизненного цикла, включая разведку и оценку месторождения, проектирование вскрытия рудных залежей, отработку, вывод из эксплуатации и рекультивацию природной среды.
- •Согласование данных, создание и постоянная актуализация цифровых моделей геологической среды и технологических объектов.
- •Внедрение автоматизированных датчиков и исполнительных механизмов, методов автоматического регулирования.
- •Постоянное действие модели геотехнологического поля.
- •Многовариантное геотехнологическое и экономическое моделирование разработки месторождения.
- •Комплексный анализ всей информации, применение интеллектуальных систем для поддержки принятия решений.

Уровни управления

Геотехнологический информационномоделирующий экспертный комплекс



ГЕОЛОГИЧЕСКАЯ ГЕОИНФОРМАЦИОННАЯ СИСТЕМА (ГГИС)

Назначение: информационное обеспечение геологоразведочных работ, оперативный доступ и анализ геологических данных на стадии проектирования и разработки месторождения урана

Позволяет проводить сбор, хранение, обработку, интерпретацию и визуализации разнородных (геологических, гидрогеологических, минералогических и др.) данных о рудовмещающем горизонте.

Ввод и интерпретация данных по скважинам (ГИС, керн, руда, технология и т.д.). Создание электронного паспорта скважин

Скважина Керновый рейсы Литология по керну Литология по каротажу Литология сводная Стратиграфия Промер керна Каротажи Инклинометрия Технологическая

Далматовское

Г фологическая колонка по скважине № 10-19-11

3954

395.4

Масштаба: 1:1000, 1:200

Запалная, блок І+ІІ'-1-С1

Составия: Воркания М. Н.

Типстанка ЗИФ-1200

Цепевое назначение универсальная

Абсолютная отметка устья 150.21

Ameran No. 6

0

@ @

50% ▼

Настройка

Виа

сохранить

Конструкция

Месторождение

132

Пробы

Министерство природных ресурсов РФ

Проходка: начата 12.07.2007

Федеральное агентство по недрополи ФГУГП "Урангео"

УФ "Зеленогорскоеопогия

СП "Юрская партия №71

Документация: начата

Файл Инструменты

. № 10-17-1

- 0 10-17-2 - 0 10-17-3

. № 10-17-4

- A 10-17-5

√ 10-17-6

√ 10-17-7

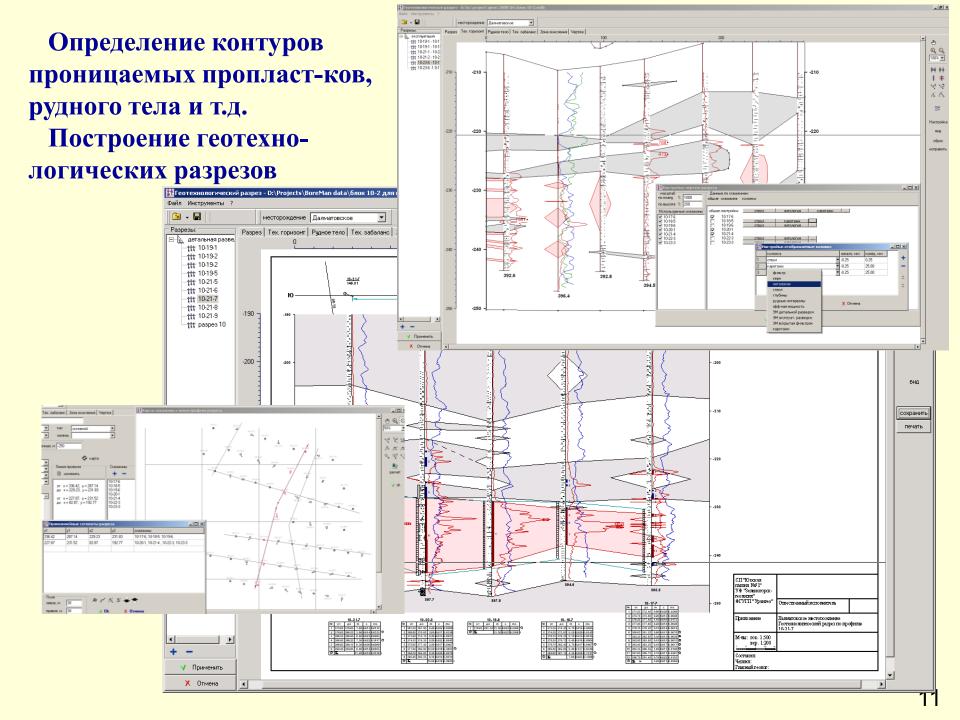
√ 10-17-8

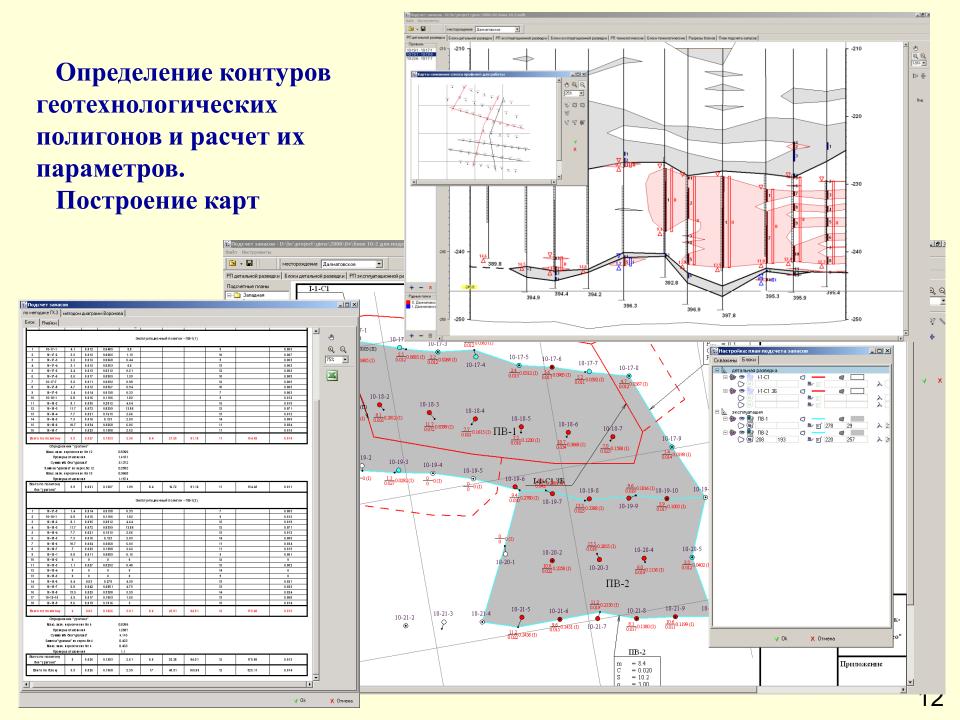
> 10-17-9

0 10-18-1

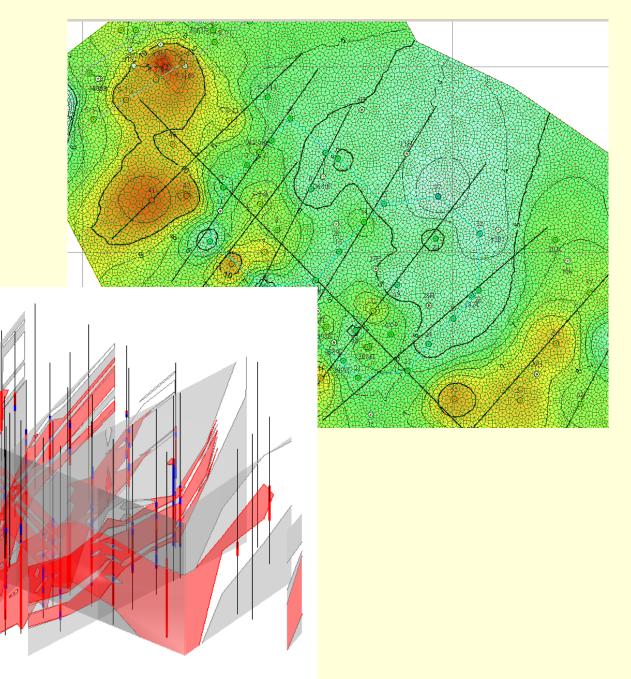
> 10-18-2

× 10-18-3


.> 10-18-4 .> 10-18-5

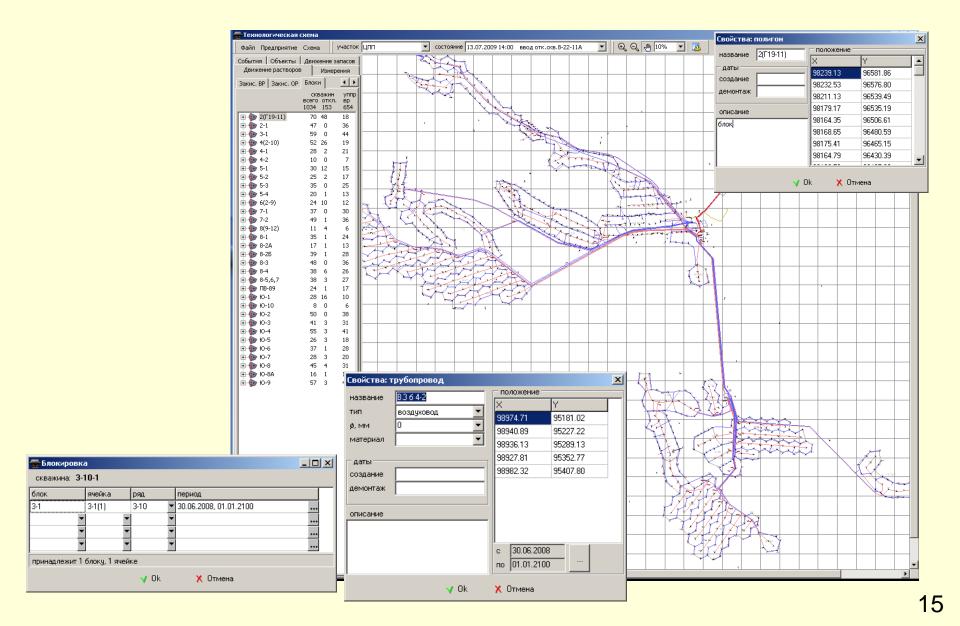

o 10-18-6

o 10-18-7


№ 10-19-1

. № 10-19-10

Построение геологических моделей



ТЕХНОЛОГИЧЕСКАЯ ИНФОРМАЦИОННАЯ СИСТЕМА ДОБЫЧНОГО КОМПЛЕКСА (ТИС ДК)

Назначение:

- сбор, хранение, обработка и визуализация фактической информации о работе предприятия,
- расчет геотехнологических показателей для блока, залежи, месторождения, включая движение запасов.
- подготовка сменных, суточных, месячных отчетов

Постоянно действующая модель добычного комплекса (скважины, блоки, трубопроводы, их взаимосвязи и т.д. с течением времени)

Сбор первичных гидродинамических, физикохимических данных по объектам добычного комплекса (результаты хим.анализов, дебиты скважин, расходы реагентов и т.д.)

Период с 31.12.2001 ▼ по 31.10.2008 ▼ ОК

15.63

|3.67

|4.16

14.16

14.9

13.67

11.70 1379

11.70 | 1377

|1.70 |383

|1.68 |400

30.63

140.0

|37.0 |34.5 11.62

139.0

|35.5 |35.0

136.0 11.64

11.59

|1.62 |1.69 |1.61

10

12.12.2007 8:52:00 |2-20-0 03.11.2007 8:44:37 |2-20-0

09.06.2008 11:00:00 IM-5

02.06.2008 10:00:00 | N-5

12.05.2008 11:00:00 | N-5

21.04.2008 10:00:00 | N-5

31.03.2008 12:00:00 | 10-5

19.05.2008 11:00:00

05.05.2008 11:00:00 28.04.2008 12:00:00

14.04.2008 9:00:00 07.04.2008 22:39:33

Содержание U, мг/л H2SO4, г/л SO4, г/л

Добавить Удалить Изменить

11-9

11-2

11-1

|1-9

11-1

|TY3 13am |5.88

|ТУЗ 1зап |9.8

ITY3 1sam | 6.86

|ТУЗ 1зап |14.7

|TY3 13am | 10.53

|TY3 1sam |11.02

|TV3 1sam |9.8

|ТУЗ 1зап |10.29

|TY3 1sam | 10.78

461.6

442.72

425.81

427.83

434.19

429.51

429.41

|TY3 1san | 10.78

1890.0

|42.5

|1.0

139.0

132.0

|555.0

Среднесуточный отчет (ТУЗЫ)

1618

1565

| 636

|646

1582

576

| 642

1588

23.06.2008 8:00:00

23.06.2008 8:00:00

23.06.2008 8:00:00

22.06.2008 8:00:00

22.06.2008 8:00:00

22.06.2008 8:00:00

21.06.2008 8:00:00

21.06.2008 8:00:00

23.06.2008 11:00:00

22.06.2008 11:00:00

21.06.2008 11:00:00

20.06.2008 11:00:00

19.06.2008 11:00:00

18.06.2008 11:00:00

17.06.2008 14:56:45

16.06.2008 11:00:00

15.06.2008 11:30:00

14.06.2008 11:00:00

13.06.2008 11:00:00

11 06 2008 11:00:00

T93 23ar

TH3 Nº1

T93 №2

T93 N±3

TH3 Nº4

T93 Nº5

T93 №7

Спепние значения по тизам

Код пробы Сод-ние H2SD4, г/л

T931san

24.06.2008 11:00:00 | TV3 13am | 3.22

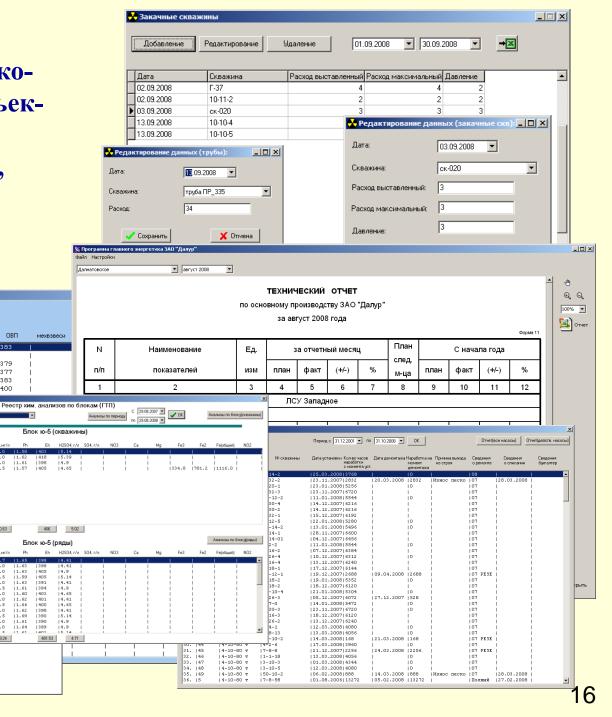
12.06.2008 11:00:00 | TV3 1sam | 9.8

11.07

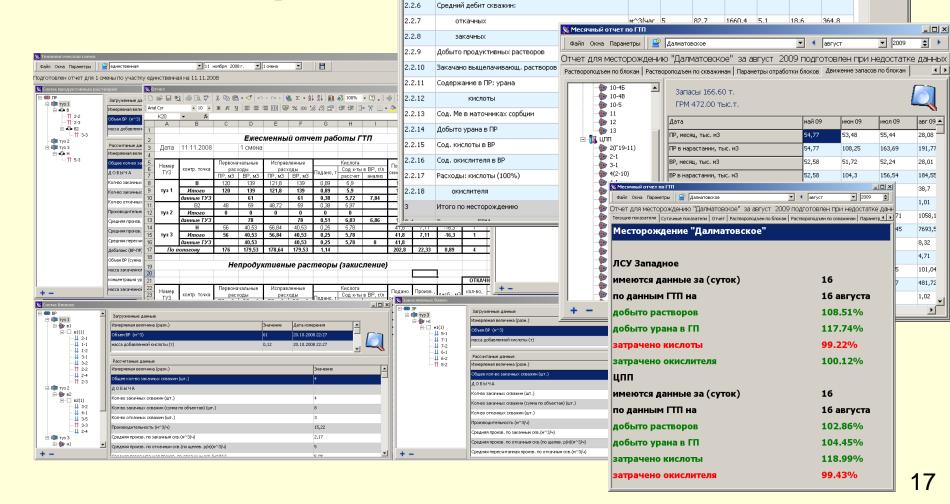
7.07

7.03

6.6


7.32

7.94


9.66

6.07

🌃 ТУЗЫ

Расчет геотехнологических показателей по всем объек-там за сутки, смену и месяц. Согласование данных. Подготовка сменных, су-точных и месячных отчетов о работе ДК

💢 Месячный отчет по ГТП

n/n

2.1.13

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

Файл Окна Параметры 👺 Далматовское

окислителя на закисление

Находилось в работе скважин, всего

откачных (эрлифтных)

в т.ч. откачных (насосных)

закачных

Добычной комплекс

Скважин, всего

Наименование

показателей

Отчет для месторождению "Далматовское" за август 2009 подготовлен при недостатке данных

шт

шт

шт

IIIT

Текущие показатели | Суточные показатели | Отчет | Раствороподъем по блокам | Раствороподъем по скважинам | Параметры отработки блоков | 🛵 🕒

Tek.Me

1034

881

202

25

654

1034

881

202

25

654

_ | D | X

2009

C H89.0

776

175

23

579

C H84.00

912

888

197

33

658

год

109,8

114.4

112,8

145.3

113,7

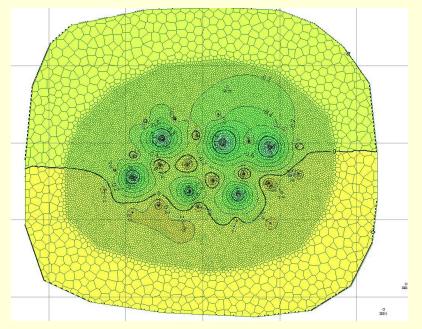
Tek.M6

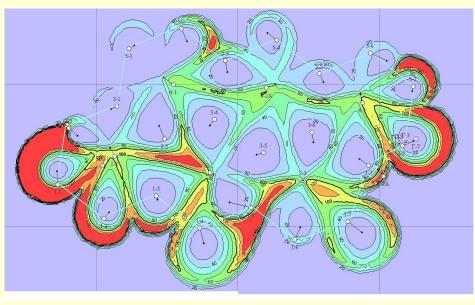
100

100

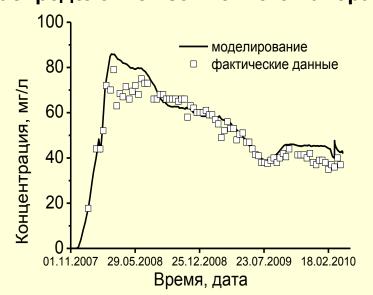
100

100


100

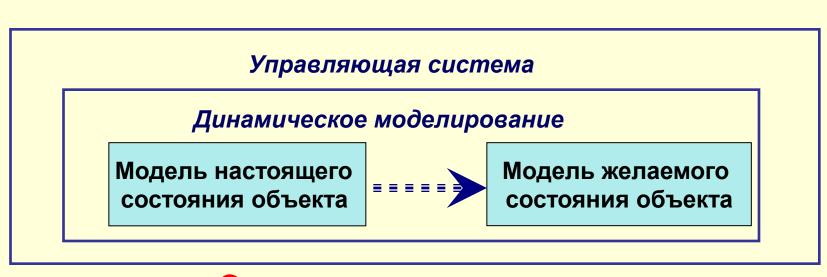


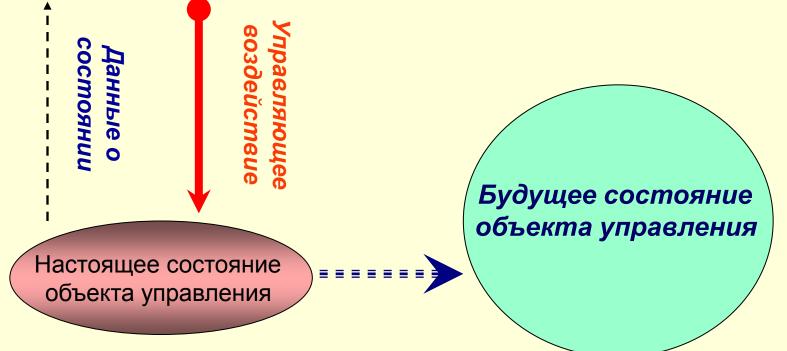
Геотехнологическая моделирующая система


Назначение:

- √определение основных геотехнологических показатели отработки месторождения;
- ✓ выбор наилучших схем вскрытия залежи и режимов отработки технологических блоков;
- ✓ оптимизация режимов отработки эксплуатационных блоков;
- √планирование отработки эксплуатационных блоков на различные сроки;
- ✓ анализ степени отработки отдельных участков эксплуатационных блоков и определение последовательность отключения технологических ячеек;
- √оценка геоэкологических последствий и планирование природоохранных мероприятий.

Распределение избыточного напора




концентрация урана в продуктивных растворах

концентрация H_2SO_4 в проточных порах

19

ЭКСПЕРТНО-АНАЛИТИЧЕСКАЯ СИСТЕМА (ЭАС)

Назначение:

Поиск, представление, анализ и оценка всего объема информации имеющейся в базах данных, создание и развитие базы знаний, подготовка управленческих решений

Анализ работы скважин, построение выборок данных по заданным критериям и др.

Выделить

дебит, м^3/ч

1,36

6,81

8,63

523,21

5,9

2,73

6,81

6,36

2,27

5,45

5,9

5,9

6,36

5,45

5,9

1417.03

уран, мг/л

28,38

17,36

26,31

33,15

10,83

36,81

57,38

43,31

54,13

49,8

43,31

14,07

16,24

14,07

24,9

Включенных скважин с нулевым дебетом - 2

скважина

Г19

1-2-7A

1-1-18

1-1-19

3-2-0

3-2-10

3-2-10A

3-2-8

3-2-9

3-2-9A

3-2-12

3-2-3

3-2-5

3-2-6

3-2-7

MTOFO (MA3)

ИТОГО (м^3)

溪 Анализ работы откачных скважин

Скважин удовлетворяющих критерию - 79

• меньше

С больше

блок

2(Г19-11)

2(Г19-11)

2(Г19-11)

2(Г19-11)

2(Г19-11)

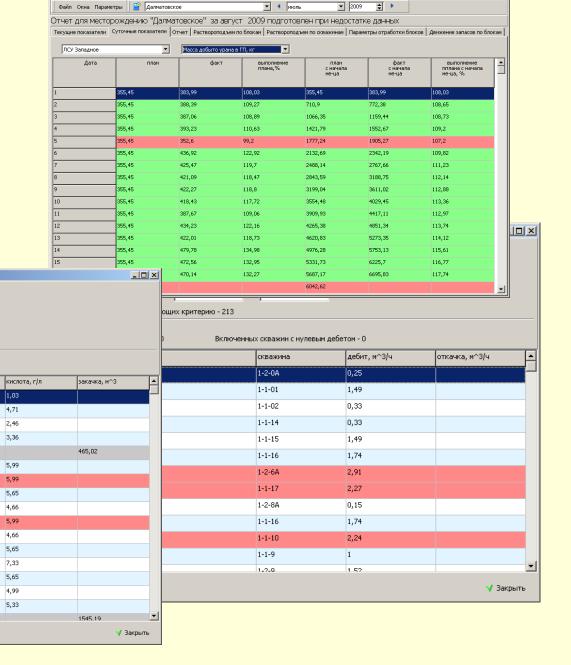
10 2-1

11

12

13

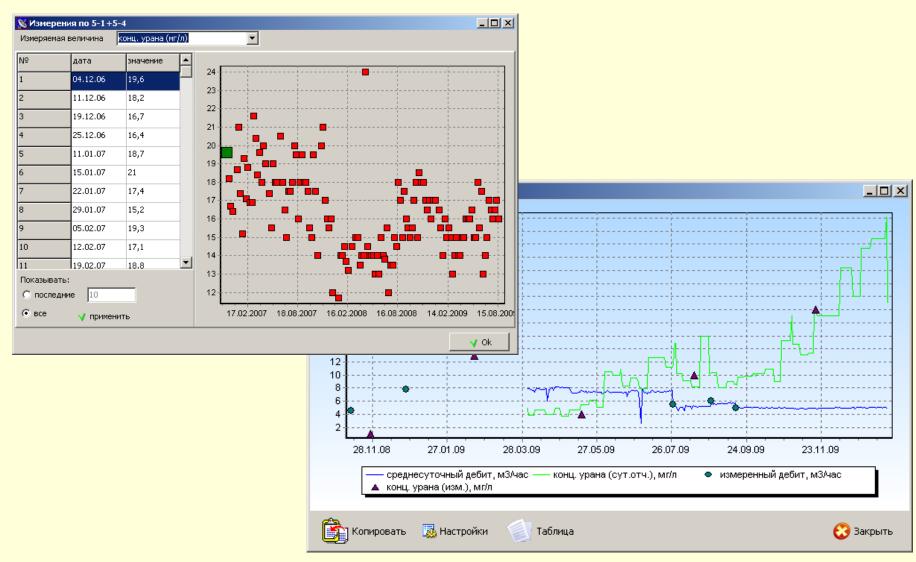
14

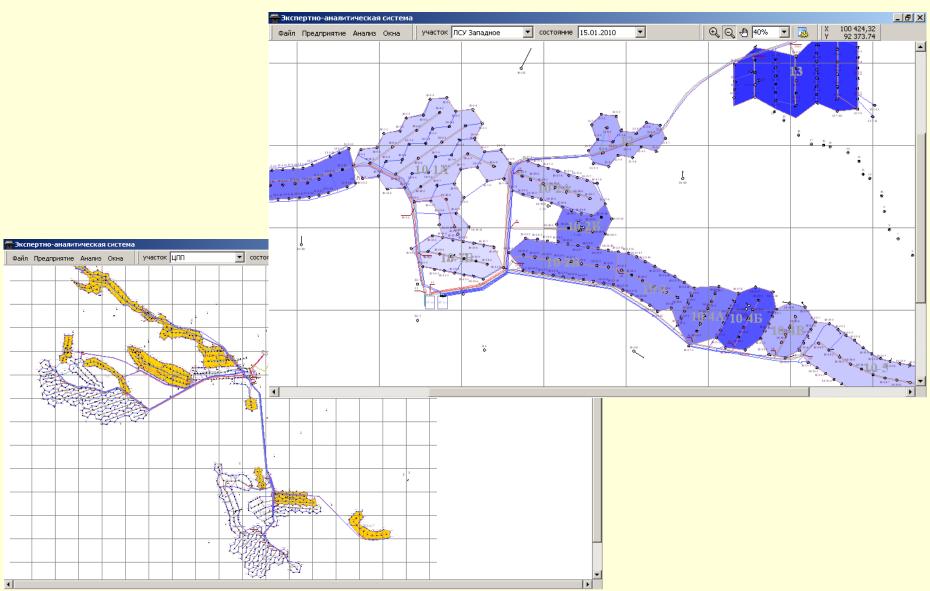

15 2-1

Nο

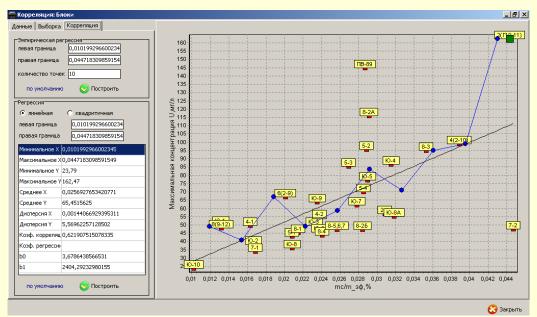
С лежит в диапазоне от

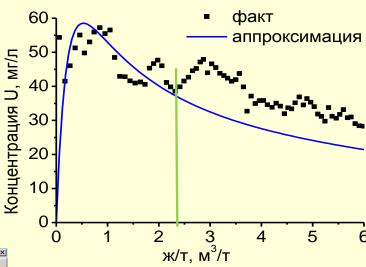
Отключено скважин - 0

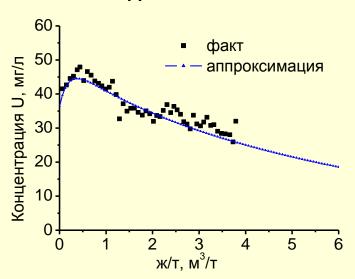

Выделить скважин, у которых значение дебита (м^3/ч)


溪 Месячный отчет по ГТП

_ | U ×


Динамика состояния технологических объектов


Анализ работы эксплуатационных блоков


Корреляционный многофакторный анализ данных

до подачи окислителя

после подачи окислителя

Перспективы развития интеллектуальной системы управления

Модуль проектирования технологических блоков генерирует оптимальные схемы вскрытия рудных залежей и проектирование отработки

Модуль оптимизации отработки генерирует оптимальные методы отработки блока в соответствии со сформулированными пользователем требованиями

Модуль расчета экономических показателей оценивает эффективность и рассчитывает плановые экономические показатели работы добычного комплекса

Модуль оценки геоэкологических последствий оценивает последствия разработки месторождения и формирует планы природоохранных мероприятий

Применение

Разведка	информационное обеспечение геологоразведочных работ, подсчет запасов, ТЭО кондиций
Подготовка, проектиро- вание	Оптимальная схема вскрытия залежи, технико- экономическое обоснование, геоэкологическая экспертиза
Отработка	Геотехнологические показатели, планирование отработки, движение запасов, оптимизация отработки блоков, экономические показатели, ореолы загрязнения, природоохранные мероприятия
Завершение работы	порядок вывода из эксплуатации скважин и блоков, планирование мероприятий по рекультивации подземных вод

Условия реализации

Обеспечение данными – система сбора, классификации и первичной обработки данных, нормативно-справочная информация;

Математическое обеспечение – совокупность методов, правил, математических моделей и алгоритмов решения задач;

Программное обеспечение – совокупность компьютерных программ, позволяющих решать поставленные задачи;

Техническое обеспечение - совокупность вычислительного и телекоммуникационного оборудования, датчики, исполнительные механизмы;

Организационно-методическое обеспечение – совокупность мер и мероприятий, регламентирующих работу персонала и использование инфрмационных технологий,.

ЗАКЛЮЧЕНИЕ

Разработка и внедрение интеллектуальной технологии управления на предприятиях, ведущих разработку месторождений урана методом СПВ, является перспективным направлением их инновационно-технологического развития

Управления разработкой месторождения урана на основе инновационной технологиии позволит:

- уменьшить удельные затраты выщелачивающих реагентов, электроэнергии, сократить сроки отработки эксплуатационных блоков в результате оптимизации геотехнологического процесса;
- снизить капитальные затраты на сооружение скважин за счет выбора выбора наилучших схем и режимов отработки блоков
- повысить производительность труда в результате автоматизация сбора и обработки данных, подготовки документации и отчетов, оперативности доступа к любой информации на различных уровнях;
- уменьшить отрицательное воздействие на окружающую среду