# **Quo Vadis Nuclear Medicine**

Threats and Opportunities from a Manufacturer's Perspective

Dr. Oliver Heid Siemens AG, Germany





The patients' need

### assurance.



#### ... it can save lives:



i.e. limb salvage instead of amputation with PET CT

(14yr old girl with osteosarcoma of lower end of right femur.)

Data courtesy of B.C. Cancer Research Center, Vancouver/Canada

Copyright © Siemens AG 2012. All rights reserved.

**Corporate Technologies / Oliver Heid** 

Use of radioactive isotopes in diagnostic imaging

#### **SIEMENS**



orporate Technologies / Oliver Heid

Copyright © Siemens AG 2012. All rights reserved.

#### **Medical Radio Isotopes**

Medical radio isotope applications

- Scintigraphy
- Positron Emissions Tomography
  PET
- Single Photon Emission Computed Tomography SPECT
- In vitro diagnostics (RIAs)
- With > 80% of procedure volume SPECT is the method of choice in nuclear medicine
- Technetium 99m is the most used radio isotope
- PET is comparatively small but rapidly growing market



scintigram PET-CT SPECT-CT

#### **Medical Radio Isotopes**

#### **Diagnostic indicators**

- Iocal isotope concentration over time
- Anatomic information tumor localization, volume etc
- Functional information perfusion, uptake, excretion etc
- Radio therapy





#### **Medical applications**

| Organs          | Isotopes                                                                  | Diseases                                               |
|-----------------|---------------------------------------------------------------------------|--------------------------------------------------------|
| Lung            | <sup>99m</sup> Tc. <sup>122</sup> Xe, <sup>82m</sup> Kr,                  | Embolisms, breathing disorders                         |
| Bone            | <sup>99m</sup> Tc                                                         | Tumours, infection, bone fracture                      |
| Thyroid         | <sup>131</sup> I, <sup>99m</sup> Tc, <sup>123</sup> I                     | Hyper/hypothyroidism, tumours                          |
| Kidney          | <sup>99m</sup> Tc. <sup>111</sup> In, <sup>131</sup> I                    | Renal function                                         |
| Brain           | <sup>99m</sup> Tc. <sup>123</sup> I, <sup>133</sup> Xe                    | Embolisms, blood flow, tumours, neurological disorders |
| Liver, pancreas | <sup>99m</sup> Tc. <sup>111</sup> In                                      | Tumours                                                |
| Abdomen         | <sup>99m</sup> Tc. <sup>67</sup> Ga                                       | Tumours                                                |
| Blood           | <sup>99m</sup> Tc. <sup>111</sup> In                                      | Infection, blood volume and circulation                |
| Heart           | <sup>99m</sup> Tc. <sup>201</sup> Tl, <sup>82</sup> Rb                    | Myocardial function and viability                      |
| All             | <sup>67</sup> Ga, <sup>99m</sup> Tc, <sup>111</sup> In, <sup>201</sup> TI | Tumours                                                |

#### <sup>99m</sup>Technetium – the Swiss army knife

#### **Advantages**

- Short half life (6.02 h)
- Pure γ emitter
- Relatively hard gamma rays (141keV)
- Low effective patient radiation dose
- Week-long availability due to <sup>99</sup>Mo generator (66 h half life)
- Cheap

#### Disadvantages

- Environmental issue (<sup>99</sup>Tc is low β emitter, 211.000 y)
- Drug labeling necessary for disease specificity

### Used in > 80 % of all exams

| <sup>93</sup> Nb  | <sup>94</sup> Mo  | <sup>95</sup> Tc  | <sup>96</sup> Ru  | <sup>97</sup> Rh  | <sup>98</sup> Pd  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| <sup>94</sup> Nb  | <sup>95</sup> Mo  | <sup>96</sup> Tc  | <sup>97</sup> Ru  | 98Rh              | <sup>99</sup> Pd  |
| <sup>95</sup> Nb  | <sup>96</sup> Mo  | <sup>97</sup> Tc  | <sup>98</sup> Ru  | <sup>99</sup> Rh  | <sup>100</sup> Pd |
| <sup>96</sup> Nb  | <sup>97</sup> Mo  | <sup>98</sup> Tc  | <sup>99</sup> Ru  | <sup>100</sup> Rh | <sup>101</sup> Pd |
| <sup>97</sup> Nb  | <sup>98</sup> Mo  | <sup>99</sup> Tc  | <sup>100</sup> Ru | <sup>101</sup> Rh | <sup>102</sup> Pd |
| <sup>98</sup> Nb  | <sup>99</sup> Mo  | <sup>100</sup> Tc | <sup>101</sup> Ru | <sup>102</sup> Rh | <sup>103</sup> Pd |
| <sup>99</sup> Nb  | <sup>100</sup> Mo | <sup>101</sup> Tc | <sup>102</sup> Ru | <sup>103</sup> Rh | <sup>104</sup> Pd |
| <sup>100</sup> Nb | <sup>101</sup> Mo | <sup>102</sup> Tc | <sup>103</sup> Ru | <sup>104</sup> Rh | <sup>105</sup> Pd |
| <sup>101</sup> Nb | <sup>102</sup> Mo | <sup>103</sup> Tc | <sup>104</sup> Ru | <sup>105</sup> Rh | <sup>106</sup> Pd |
| <sup>102</sup> Nb | <sup>103</sup> Mo | <sup>104</sup> Tc | <sup>105</sup> Ru | <sup>106</sup> Rh | <sup>107</sup> Pd |

#### And what about the rest?

### Other radio isotopes

#### Advantages:

- Drug labeling mostly unnecessary
- Optimal half life, bio distribution, patient dose etc
- Multi isotope exams possible

#### **Disadvantages:**

- Lots of rare procedures
- Expensive, uneconomic within the current supply logistics
- Long half life needed if produced remotely and shipped

#### High pressure to migrate procedures to <sup>99m</sup>Tc or CT, MR, in vitro

#### **Accelerator products**

#### **Fission reactor products**

<sup>3</sup>H, <sup>14</sup>C, <sup>51</sup>Cr, <sup>64</sup>Cu, <sup>97</sup>Ru, <sup>99</sup>Mo, <sup>125</sup>I, <sup>131</sup>I, <sup>133</sup>Xe, <sup>153</sup>Gd, <sup>195m</sup>Pt

#### <sup>99m</sup>Technetium – a horse's hair

- Very few worldwide production sites
- Operating on highly enriched uranium HEU
- Worldwide timely delivery takes substantial logistical effort
- Global shipment of large amounts of dangerous substances

#### Fragile supply chain

# Shock effect of the supply crisis in ~ 2010



#### **PET - A special case**

- 117min <sup>18</sup>F half live enforces local isotope production
- Only partial replacement for SPECT, scintigraphy
- Particle accelerator based isotope production and drug labeling is done within hospitals: "baby cyclotrons"
- Reimbursement schemes make this effort still economic
- Recently US FDA enforces industrial production quality standards
- One answer is distributed but industrialized production facilities



#### **Quo Vadis Nuclear Medicine ?**

PET

# SPECT Scintigraphy

#### Nuclear Medicine – the ideal

#### On demand availability of a variety of isotopes

- Minimizes waste
- Minimizes production effort
- Minimizes radiation exposure
- Independence of supply chain problems

#### Local production means

- Particle accelerator based
- No fission reactor production
- Industrial quality drug processing
- Production automation
- Has to be economically feasible under current reimbursement



#### Nuclear Medicine – the medical perspective

# There is a long time tendency to replace nuclear medicine with radiological exams:

- Lung emboli scans: helical CT angio
- Tumor search: MRI
- Functional studies (kidneys, heart): MRI, CT, ultrasound
- Vitamin B12 deficiency: in vitro test (gastric antibodies)

#### PET migrates itself towards radiology

PET-CT hybrid scanners established PET in medicine!





#### **The Big Questions**

### Is Nuclear Medicine really irreplaceable?

### **Does PET demonstrate the way forward?**

- Iocal production
- integration into radiology

# What does this mean for isotope production and delivery?

- particle accelerator design
- industrial distributed production
- supply chain business models



## Thank you

#### Prof. Dr. Oliver Heid

Siemens AG CT T-P Technology and Concepts Erlangen, Germany