

AREVA's Solutions for Post-Fukushima Safety Enhancements

Rolf Janke Director Strategy and Technical Development / IBU-G Moscow, 4 June 2012

International Forum ATOMEXPO-2012 "Nuclear Power after Fukushima in Operators' Eyes"

AREVA's Solutions Extension of the Grace Period

- -Assessment of plant's robustness against hazards
- -Full new diverse heat sink (scope: Design Basis Accident)
- -Bunkered emergency supply building
- -Hardening the secondary "Bleed & Feed"
- -Inspirations from AREVA's new NPPs
- -Mobile solutions for further risk mitigation

The 6 Main Safety Topics

AREVA

Station Blackout and Loss of Ultimate Heat Sink Regulatory Trends

- More challenging requirements on extended grace periods are expected worldwide, e.g.:
 - the 7d/3d German approach for maintaining the residual heat removal and barrier's integrity under "Station Blackout" and "Loss of Ultimate Heat Sink".
 - 3d plant cooling autarky without support from outside and time critical accident management measures.
 - The safety functions should be maintained until recovery of a plant-grid connection, but not less than 7d.
 - After 3d credit can be taken from well prepared and reliable available external support.

Robustness of the Plant against Beyond Design Hazards Plant Specific Assessment

	Which essential functions are required to prevent core damage, large or early releases?	
Grace Period	How much residual heat has to be removed at what time to have the necessary essential functions available on time?	
Robustness Cliff edge effects	Which practically not eliminable" Beyond Design Basis external or internal hazards could lead to loss of heat sink or water supply? (Failure ranking considering the level of robustness or prevention)	
Plant Autonomy Information	Which requirements should the AM measures fulfill to compensate the loss of the designed heat sink and heat removal systems?	
Blackout Accessibility		
Connectability	How such AM measures can be realized? Which level of robustness is achievable?	

Alternate Ultimate Heat Sink Solutions Embedded in the Plant Cooling Systems

AREVA

AREVA's Solutions for Post-Fukushima Safety Enhancements - ATOMEXPO-2012 - Rolf Janke - 4 June 2012 - AREVA NP All rights are reserved by AREVA NP GmbH. GmbH Proprietary - p.6

Emergency Power Supply AREVA Projects

NPP Upgrade, Sweden

2 Buildings with 2 DGs each -> 1 Building approx. 12,000 m³

NPP Upgrade, Germany (1) 1 Building with 2 DGs + Air Cooling system, Building approx. 21,000 m³ New Build – per EPR: 2 Buildings, each with 2 EDGs + 1 SBO-DG

NPP Upgrade, Germany (2) 1 Building with 1 DG, Building approx. 11,000 m³ NPP Upgrade, Switzerland (project prepared)

2 Buildings with 2 DGs each -> 1 Building approx. 10,000 m³

Diverse Heat Sink Solutions - Bleed into Atmosphere Hardening the Secondary "Bleed and Feed" (2/2)

- Open cooling into the atmosphere by "Secondary Bleed&Feed"
 - Demonstrated for German NPPs by calculation (72h autarky with the bunkered EFW-DG D2system)
- Open Reactor and Spent Fuel Pool
 - Shortened primary cooling chain supplied by AM measures
 - Cooling water from outside water reservoirs
 - Spent Fuel Pool cooling under SBO
 - Bleed into the containment
 - Feed among others by a separate pipe directly into the pool from above

On one axle: Diesel – Generator – Motor alternate to the Diesel - EFW Pump

Mobile Solutions for further Risk Mitigation

AREVA's investigations on behalf of and in cooperation with E.ON

AREVA

Mobile D4 Diesel (1 MVA) for Primary Residual Heat Removal up-to Grid Recovery (e.g. NPP Isar2)

- 1.1 MW / 400V (10 kV) ▶ ~ 30 t, ~ 15 x 2.5 x 4 m
- Parallel operation possible

▶ 1.1 MW, 400 V (tanks) ▶ 4.1 t, 3.7 x 1.5 x 1.5 m ► car trailer, light helicopter Parallel operation till 34 MW

AREVA's Solutions for Post-Fukushima Safety Enhancements - ATOMEXPO-2012 - Rolf Janke - 4 June 2012 - AREVA NP GmbH Proprietary - p.12

Mobile Fire Pump Injection into SG via the Auxiliary Feedwater System

AREVA

Back-up Mobile Pumps for EFW Pump and Tank by Water from River or Cooling Tower (NPP Isar2)

Innovations from KERENA Inspirations for existing BWR Plants

Passive Safety Features of KERENA

- Passive pressure pulse transmitter
- Containment condenser
- Emergency condenser
- RDB outer cooling

Solutions for BWR (Gundremmingen)

- Passive impulse sensor
- Passive residual heat removal chain
- RDB outer cooling
- Passive flooding of RPV
- Accident sequence using passive elements

Ultimate Heat Sink Solutions **Inspirations from AREVA's new NPP (2/2)**

- Inspirations for installed BWR from **KERENA:** Passive heat removal from core + containment
- Heat transfer from RPV and containment without electrical power supply
- **Emergency condenser**
- **Containment cooling condenser**

Passive Pressure Pulse Transmitter

AREVA

Spent Fuel Pool Cooling & Level Measurement under SBO

AREVA's references, e.g.: NPP Gösgen and BWR KERENA

Spent Fuel Storage Pool Passive Heat Removal

Example for residual heat removal from a Spent Fuel Storage Pool

Passive heat removal system at NPP Gösgen

AREVA's Solutions for Post-Fukushima Safety Enhancements - ATOMEXPO-2012 - Rolf Janke - 4 June 2012 - AREVA NP GmbH Proprietary - p.19

Spent Fuel Pool Adaptation of Kerena (BWR) Cooling Solution

- Natural circulation in the fuel pool
- Heat transfer via closed cooling water system to service water cooling system
- 15 MW cooling capacity with KERENA cooling systems possible (8 cooler in fuel pool)
- Severe accident management cooling with fire protection water possible
- ~ 4 m along the wall, 0.55 m width, chimney ~ 14 m

AREVA's Solutions for Post-Fukushima Safety Enhancements - ATOMEXPO-2012 - Rolf Janke - 4 June 2012 - AREVA NP GmbH Proprietary - p.20

SFP Instrumentation **Accident Level Measurement Device**

- Magnetic floater unit moves with water level
- Magnetic field actuates nearest reed switch, changing the overall resistance for the current sent out by the transmitter
- Current magnitude ~ water level
- SBO: resistance is measured with an Switch Sensor ohmmeter and correlated to level using a prepared table
 - Sensor accuracy: 18 mm
 - Measurement range: 0.4 m 10 m
 - Sensor response time: 1 s
 - Accident and seismic qualified (156°C, 5 MGy)

Other AREVA solutions:

Through-Air Radar Strain Gauge Pressure Transducer **Air Injection Level Measurement**

Reed

Unit

Floater

Guide

Tube Uni

Magnetic

Floater Unit

Containment integrity protection and radioactive release prevention

Monitoring and sampling the containment atmosphere under severe accident conditions (HERMETIS, PRONAS)

Prevention of Hydrogen explosions

Filtered Venting AREVA's references: 55 NPPs worldwide

AREVA's Standard Plus High Speed Sliding Pressure Venting Plus

AREVA's Solutions for Post-Fukushima Safety Enhancements - ATOMEXPO-2012 - Rolf Janke - 4 June 2012 - AREVA NP All rights are reserved by AREVA NP GmbH. GmbH Proprietary - p.23

Working Principle and Retention Rates

3. Sorbents Section

Retaining of remaining and re-volatilized iodine (Elemental & Organic)

2. Metal Fibre Filter

- Large pre- and fine filter surfaces
- Penetrated fine aerosols retained
- Re-suspension aerosols captured

3. Venturi Scrubber

- Most aerosols retained
- Most elemental iodine retained (mid term)
- Large quantity of organic iodine retained (mid term)

4. Decontamination Factors:

- ► Fine aerosols > 10⁴
- Large aerosols > 10⁵
- Aerosol iodine > 10⁶
- Elemental iodine
- Organic iodine > 50 to 100

ARE\

> 10³

Working together with Operators Summary

- Stepwise methodology to identify plant-tailored solutions to enhance the plant's robustness against beyond design hazards and afterwards and perform implementations while taking benefit from AREVA's referenced solutions
 - Improved protection against hazards to prevent the existing capabilities, e.g. primary heat sink, power supply.
 - Extension of the grace period
 more time for accident management, e.g. by bunkered hazards robust systems for "Secondary Feed&Bleed", primary and Spent Fuel Pool cooling.
 - Mobile backup solutions for water and power supply with accessible connection points.
 - Implementation of a full alternate emergency supply and heat removal system with a diverse heat sink → Common Cause Failure for SBO and Loss of UHS ↓
 - Accident-proofed instrumentation
 - Filtered venting and hydrogen recombination to ensure containment integrity and mitigate the risk of r/a releases into the environment.

AREVA has references for all steps and is looking forward to a mutual satisfactory cooperation

ARE\

AREVA's Post-Fukushima Initiative

A catalogue of 35+ selected products and services across AREVA's full nuclear portfolio

A dedicated R&D organization for prioritized projects

Working together AREVA with Operators

End of presentation AREVA's Solutions for Post-Fukushima Safety Enhancements

Dr. Rolf Janke Director Strategy and Technical Development / IBU-G Moscow, 4 June 2012

International Forum ATOMEXPO-2012 "Nuclear Power after Fukushima in Operators' Eyes"

