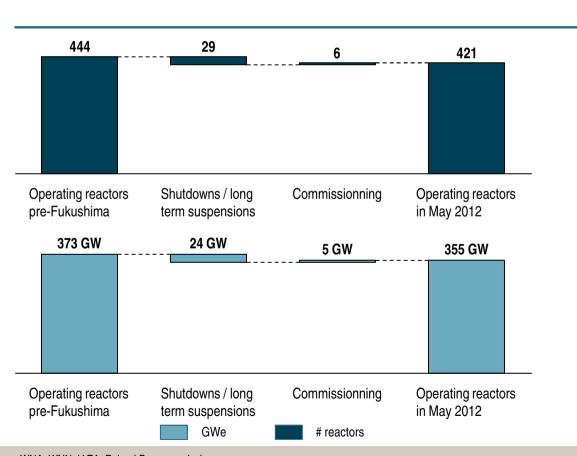


Before the Fukushima tragedy, worldwide nuclear capacity was concentrated in 4 locations: US, France / Europe, Japan, Russia

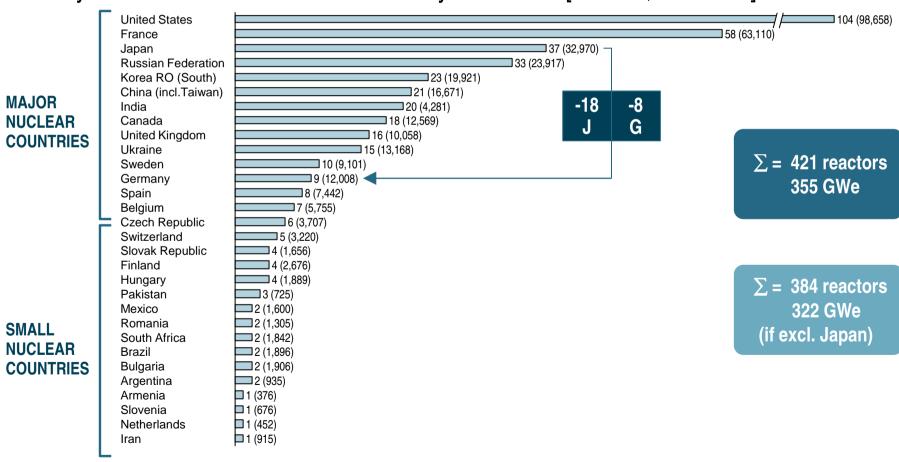
World mapping of nuclear installed base – May 2012


KEY FIGURES

- > 384 operating reactors in 30 countries if excluding Japan (vs. 444 reactors in 30 countries before Fukushima)
- > **322 GWe** net capacity if excluding Japan (vs 373 pre-Fukushima)
- > 58% of reactors (66% of capacity) located in the USA and Western Europe (without Japan)
- No more reactor operating in Japan as of now (last operating one put in maintenance early May)

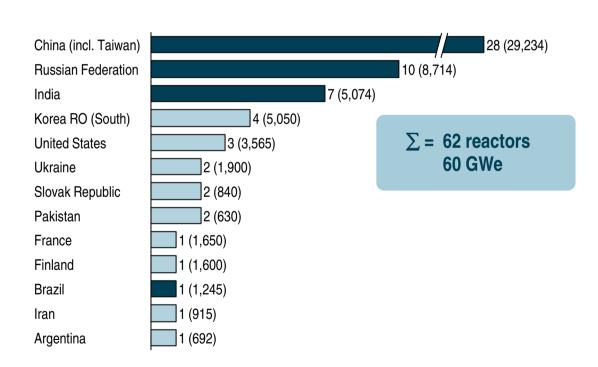
Since Fukushima, the operating nuclear base has decreased by 5% - restarts of idled reactors in Japan is a question mark

Number and capacity of nuclear reactors worldwide


KEY DEVELOPMENTS

- > Including Japanese reactors damaged by the tsunami or shutdown on a long term basis by government request, we observe a net substraction of 24 GW (29 reactors) to the operating base
- > Shutdowns are concentrated in Japan (14.6 GW, 18 reactors), **Germany** (8.3 GW, 8 reactors) and the UK (0.9 GW, 3 reactors)
- > Additions are in China (1.6 GW, 2 reactors), Iran (0.9 GW, 1 reactor), Russia (0.5 GW, 1 reactor) and South Korea (1.9 GW, 2 reactors)

The hierarchy among nuclear countries has not been dramatically modified - Germany and Japan as main impacted countries

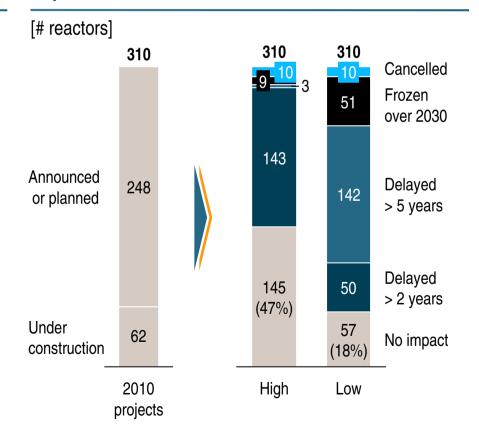

Country breakdown of Installed base – May 2012 view [# units; MWe net]

The Nuclear market is still expanding. 60 GW under construction worldwide, thereof 75% in BRIC countries

Country breakdown of the NPP under construction – May 2012 [# units; MWe net]

COMMENTS

- > Most of NPPs under construction are located in Asia and Eastern Europe:
 - China (mainland and Taiwan) is the main country for reactors under construction
 - Significant activity in Russia, South Korea and India
 - Very few projects in developed countries
- > All NPP under construction should be in operation by 2020


Overall, the Fukushima impact will remain small on installed base, but more significant on new build- over 60% delays in "low" scenario

Impact on INSTALLED BASE

[# reactors] 444 444 444 Early shutdown 29 Life span extension 66 not granted 414 (93%) 349 No impact (79%)Operating High Low in 2010

Typical life span: 40 years. Typical extension: 20 additional years

Impact on NEW BUILD

Germany has been preparing phase-out for 10 years, but does it make any difference?

PHASE-OUT PLAN

Gradual and long-time discussed phase-out

- > Voted in 2000, brief U-turn in 2010, but phase-out confirmed in 2011
- > Complete phase-out gradual until 2022. 8/17 plants already down
- > As early as 2010, a plan for 2050 energy was voted: Energiewende)

Brutal event breaks long time nuclear expansion

- > Before: non stop nuclear-expansion policy since 1974. Plan to double capacity by 2050. Tomari 3 built in 2009
- > After: only 11% of typical nuclear capacity still operating (Feb. 2012)

ELECTRICITY IMPACT

Electricity supply is sufficient, albeit by a lesser margin

- > Electricity imports +25% in 2011, export surplus -62%
- > Germany passes the winter freeze without restarting nuclear plants

An organized transition towards renewables

- > Clear energy policy, pro-active laws & funding to upgrade the network, and renewable energy generation.
- > Renewables share 17% and growing

Electricity supply is not sufficient

- > Electricity available 10% inferior to the needs
- > Rolling blackouts and 15% demand reduction rules instituted

A hazy path forward

- > Energy policy pulls out all the stops to make supply and demand match (nuclear plants 60y extension, oil fields research, demand reduction, partnerships for fossil fuels imports and power production)
- > Renewables share 10%

ECONOMY IMPACT

An accepted and limited price increase

- > More than half of Germans ready to pay an additional 75€/year to have a nuclear-free electricity
- > Energy price +20% expected by 2020

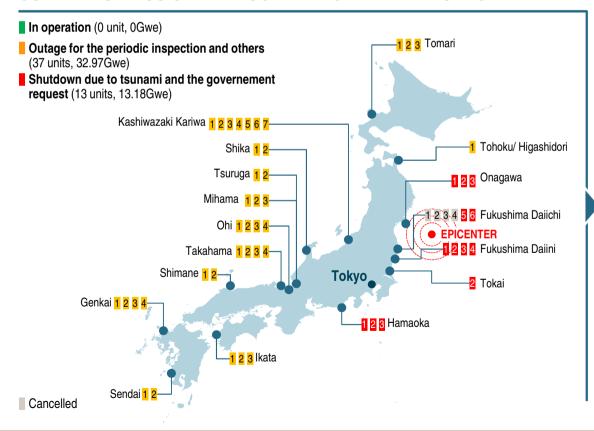
No significant negative impact on economy

- > Balance of trade +3% in 2011
- > 280.000 jobs in green energy technologies
- > 15 000 jobs at risk in nuclear industry

An erratic rate hike

- > A rise of 18% was announced (representing 40% of the night rate used by the steel furnaces), then banned by the government
- > Energy price +70% expected in 2030 (Nikkei)

Dramatic impact on economy


> Balance of trade -138% in 2011, negative for first time since 1980, Increase of energy imports make up for 2/3 of this evolution

In Japan, no final decision has yet been taken regarding the future of nuclear energy

Overview of Japan nuclear plants

CURRENT STATUS OF THE NUCLEAR POWER PLANTS IN JAPAN

POSSIBLE SCENARIOS

- > Since May 5 2012, all nuclear reactors in Japan have been shut down. All reactors under construction or planned are cancelled
- > Low scenario anticipates a definitive shut-down of all nuclear reactors in Japan
- > High scenario plans a restart of the reactors shut down for periodic inspection with a 1 year delay and no life extension
- > Only one reactor authorized for restart so far

Public opinion on nuclear technology in Europe today – Implications for future applications of nuclear technology in France, Italy and Germany

Nuclear power in the EU

- > In 2012, 14 of the EU-27 countries have operating NPPs to generate electricity (BE, BG, CZ, FI, FR, DE, HU, NL, RO, SK, SI, ES, SE and the UK) partially a major pillar of national electricity supply
- > Germany, Switzerland and Belgium have announced plans to progressively phase out nuclear energy (by 2022, 2034 and 2025 respectively)

BEFORE THE EVENTS IN JAPAN

- > France (63 GW¹) nuclear leader in Europe historically positive on nuclear power – also due to dependence on this technology
- Italy (0 GW¹) abandoned NPP in 1990 as a Chernobyl consequence, reversed decision 2008 – in 2011 a referendum on NPPs
- > Long lasting debate about nuclear power generation in Germany (20 GW¹) nuclear power plant lifetime extension in 2010

AFTER THE EVENTS IN JAPAN

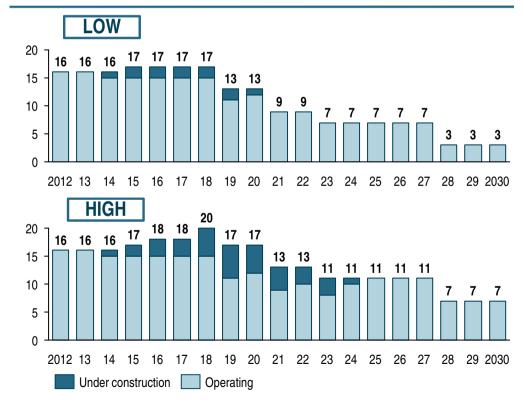
- France government kept faith with nuclear after
 Fukushima, but recent political changes (election of M. Hollande) should reverse its position
- > Italy canceled its nuclear plan after Japan crisis
- > Last state elections were strongly dominated by energy policy, pushing the green party significantly
- > Public survey shows than approx. 64% of Germans want to exit nuclear power generation by 2020, 48% would accept to pay EUR 40 per year more for electricity if this supports the process (n=1086)

¹⁾ Capacity of nuclear power in respektive country in 2011

The UK is facing strong challenges to replace its nuclear facilities – new build have been delayed due to financial constraints

Scenario considered for the United Kingdom

OVERVIEW ON UK CURRENT STATUS


Recent development

- > 3 reactors closed recently (924 MWe): Oldbury 1-2, Wylfa 2
- > Financial difficulties for planned projects: "Horizon" and "NuGeneration" projects are seriously threatened (3 reactors in total). Horizon put up for sale. EDF has not announced any change yet (4 reactors)
- > Life extensions of existing reactors are expected

Roland Berger scenario

- > EDF reactors to enter in service in 2018, 2019, 2020 and 2022
- > Other projects not before 2030
- > Life extension on a case by case approach based on EDF "high confidence scenario" for existing plants in the UK

CHANGES IN UK INSTALLED CAPACITY [# REACTORS]

This has caused some private interests to disappear on new plants construction – but the impact remains limited (UK mainly)

Overview on main nuclear projects in the United Kingdom

EDF PROJECTS

HORIZON PROJECTS

NUGENERATION PROJECTS

Structure of the project

- > JV between EDF and Centrica
- > EPR reactors should be built by **Areva**
- > Partners claimed **not** to change their plans despite difficulties on other UK projects

Expected power plants:

- > Hinkley Point C 1 & 2
 - 2 reactors
 - 1.650 MW each
- > Hunterston B 1 & 2
 - 2 reactors
 - 1.650 MW each

Structure of the project

- > Originally a JV between E.ON and **RWF**
- > Horizon recently announced for sale
- > Among others, Russian and **Chinese** operators have expressed interest

Expected power plants:

- > Oldbury-B
 - 3 reactors
 - ~ 3,500 MW in total
- > Wylfa-B
 - 4 reactors
 - ~ 5.000 MW in total

Structure of the project

- > Originally a JV between GDF Suez and Southern Scottish Power
- > SSP left the JV in September 2011
- > no investment expected before 2014-2015

Expected power plants:

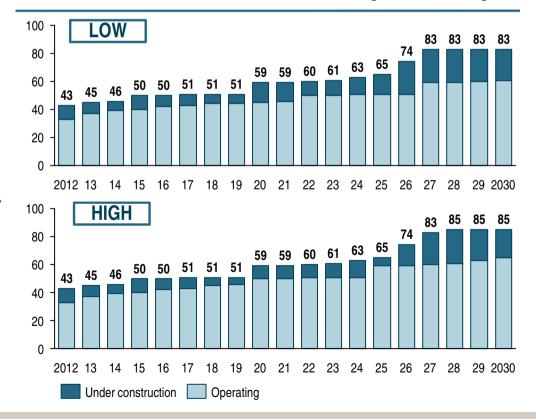
- > Sellafield
 - 3 reactors
 - ~ 3.500 MW in total

- > Some private investors in the UK have been discouraged by the government's uncertainty projects should continue though
- > In other countries, private interests have been preserved

Russia did not change its plan in nuclear development after the Fukushima accident

Scenario considered for the Russia

OVERVIEW ON RUSSIA CURRENT STATUS


Recent development

- > Following Fukushima, authorities announced their intention to improve security – back-up power and water supply as main concerns - and to extend the life of the existing reactors
- > The Kaliningrad plant is now under construction
- > Kalinin 4 is operating since November 2011
- > Russia is strongly pushing exports in nuclear energy, with plans in 7 countries at least¹⁾

Roland Berger scenario

- > No delays for reactors under construction
- > 2 years delays in low scenario for "planned" or "announced" reactors

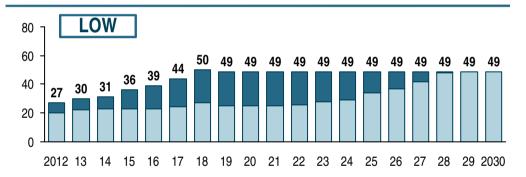
CHANGES IN RUSSIA INSTALLED CAPACITY [# REACTORS]

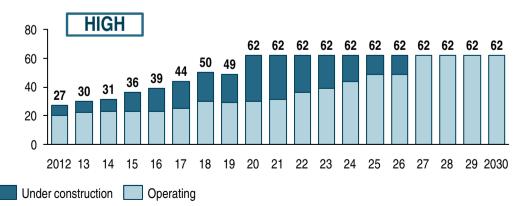
¹⁾ Ukraine, Belarus, India, China, Turkey, Vletnam, Bangladesh

Indian has not changed its ambitions in nuclear energy

Scenario considered for India

OVERVIEW ON INDIA CURRENT STATUS


Recent development


- India has affirmed plans to boost nuclear capacity to 63 GW by 2032, doubling current capacity in service by 2015
- > 2 reactors entered recently into construction: Kakrapar 4 and Rajasthan 7 (630 MW each)
- > Some delays are expected for reactors under construction due to public protests (Kudankalam 1&2). All reactors being built in India are potentially concerned by such delays as India is a democratic country with strong power given to local authorities

Roland Berger scenarios

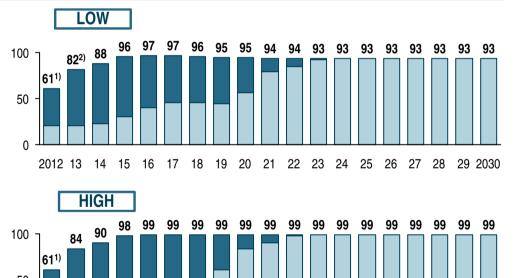
- > High: considering delays, about a half of the reactors under construction or planned enter service by 2030
- > Low: all reactors are somehow delayed

CHANGES IN INDIA INSTALLED CAPACITY [# REACTORS]

China is expected to rely strongly on nuclear energy in the future – 40 reactors expected to be in construction by the end of 2012

Scenario considered for Greater China

OVERVIEW ON GREATER CHINA CURRENT STATUS


Recent development

- > Stress tests following Fukushima : small impact on projects under construction, delay on planned reactors
- > Taiwan announced a progressive phase out
- > 2 new reactors completed in mainland since Fukushima, adding 1650 MWe to the total capacity

Roland Berger scenarios

- > Reactors under construction: delay assumed vs WNA expected date of completion (2 years in low scenario, 1 year in high scenario)
- > Reactors planned or announced: new estimated starting date for construction (based on WNA if available, RB estimates otherwise) + 6 years estimated to complete construction + delay due to potential post-Fukushima potential measures (2 years in low scenario, 1 year in high scenario)

CHANGES IN GREATER CHINA INSTALLED CAPACITY [# REACTORS]

^{1) 28} reactors already in construction in May, 12 more expected to start by the end of 2012. 21 reactors operating

2) 2 reactors under construction in Taiwan expected to be cancelled in RB low sceario