

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Improving the Reliability and Economic Efficiency of Nuclear Fuel for NPP's. «Driving to Zero Failure».

Executive director of JSC TVEL D. Krylov

Moscow 6 June 2012

Our Goal

To supply Customer with the fuel, that ensures:

Safe and reliable operation

Economic efficiency of utilization in flexible fuel cycles

ATOMEXPO 2012 International Forum «Nuclear Power Industry Worldwide: One Year After Fukushima». Round table: «International Cooperation in the Nuclear Fuel Cycle». Moscow, 6 June 2012

FILEL COMPANY OF ROSATOR

Improvement of Nuclear Fuel reliability

Improvement of FA resistance to distortion Implementation of FA with robust skeleton

Improvement of protection from foreign materials in the coolant Implementation of debris filters (DF)

Improvement of resistance to vibration loads Implementation of antivibration grids (AVG)

Improvement of thermal-hydraulic performance Implementation of intermediate flow mixers (IFM)

Improvement of PCI behavior, Decrease in fission gas release Increase in fuel grain size

Improvement of resistance to corrosion and radiation Application of new constructional materials

Improvement of economic efficiency of Nuclear Fuel

Increase in fuel burnup

Elongation of fuel in-core life-time

Creating conditions for units thermal power uprate

Justification of nuclear fuel operation in loadfollow modes

VVER-440 Nuclear Fuel

VVER-440 Nuclear Fuel

Second generation fuel Average enrichment 4.87% Fuel pellet 7.6/1.2 mm

5-year fuel cycle at a power level of 1471 MW(th) (107%). Profiled fuel rod bundle, U-Gd fuel. 66 FAs in the reload batch. Burnup of 65 MW·d/kgU. Load follow operation.

In 2010, pilot operation of reload batch started at Kola NPP Unit 4.

~ 25 µm

8-10 µm

Second generation fuel Average enrichment 4.87% Fuel pellet 7.8/0 mm

5-year fuel cycle at a power level of 1540 MW(th) (110%).

Profiled fuel rod bundle, U-Gd fuel. 60 FAs in the reload batch. Burnup of 65 MW·d/kgU. Load-follow operation.

Development of design documentation in 2013

VVER-440 Nuclear Fuel

RK-3 design – without the shroud tube, skeleton formed by angels and tubes. Mass of UO2 - 132 kg (increased by 4.5%). Fuel rod pitch in the bundle increased from 12,3 to 12,6 mm.

Fuel cycle – 6 x year. The expected benefit of RK-3 implementation – increase in fuel consumption efficiency about 10%.

Pilot batch operation (12 FAs) started at Kola NPP Unit 4 in 2010

VVER-1000 Nuclear Fuel

VVER-1000 Nuclear Fuel

FA of 4th generation for VVER-1000

Fuel column length 3680 mm Fuel pellet size 7.8x0 mm 12 spacer grids Intermediate flow mixers Bottom nozzle with debris filter Antivibration support unit

Stages of development

Design documentation	2012
Pilot operation	2014
Regular reloads	2016

VVER-1000 Nuclear Fuel

VVER-1000 fuel cycles, thermal power 104 % N_{nom}

ATOMEXPO 2012 International Forum «Nuclear Power Industry Worldwide: One Year After Fukushima». Round table: «International Cooperation in the Nuclear Fuel Cycle». Moscow, 6 June 2012

Load follow modes at NPPs with VVER-1000

VVER-1000 FAs allow to operate in load-follow modes

Experiment-calculated justification is performed

Daily load-follow in the range 100-75-100 % N_{nom} Up to 200 cycles per year

Primary load-follow in the range ± 2 % N_{nom}

The calculation analysis of power ramp from 50% to nominal power without 3-hours delay step was carried out. The result is positive

ATOMEXPO 2012 International Forum «Nuclear Power Industry Worldwide: One Year After Fukushima». Round table: «International Cooperation in the Nuclear Fuel Cycle». Moscow, 6 June 2012

Development of Nuclear Fuel fabrication technology

Radial forging machine

✓ Tolerance for outer diameter ± 0,04 mm (previously ± 0,05 мм)
✓ Polythickness less than 0,05 mm (new requirement)
✓ Roughness less than 0,6 mkm (previously 1mkm)

ATOMEXPO 2012 International Forum «Nuclear Power Industry Worldwide: One Year After Fukushima». Round table: «International Cooperation in the Nuclear Fuel Cycle». Moscow, 6 June 2012

Rolling mills

Development of Nuclear Fuel fabrication technology

Section for producing uranium dioxide powder by "dry" conversion technology

Line for producing pellets

Stacker of pressed pellets in trough for sintering

Equipment for optical inspection of pellets appearance

Fuel pellets on pallets

14

Development of Nuclear Fuel fabrication technology

Line for fuel rod fabrication

Robotized complex for assembly and welding of FA skeletons

Automated bench for fuel bundle assembly

Robotized complex for spot welding of spacer grids

Optical bench for FA geometry inspection

15

Driving to Zero Failure

Target:

Achieving Zero Fuel Failure and operation of "clean" cores.

Task:

Development and implementation of a scope of scientifictechnical and technological measures, aimed at detection and elimination of fuel failure causes for VVER-1000.

Result:

Decrease in radiation dose on the staff, better ecological environment, decrease in NPP expenses for fresh nuclear fuel purchase and treatment with spent fuel, shorter outage length.

Driving to Zero Failure

Design

1. Qualified personal

2. Proven technical solutions

3. Resistance to operational damaging factors (debris, vibration, water chemistry, handling, etc.)

Fabrication

- 1. Qualified personal
- 2. Components quality
- 3. Fabrication culture

4. Automated manufacturing procedures

5. Quality control of the product

Operation

1. Qualified personal

2. Non-violation of operational procedures

4. Smart handling procedures

Zero Fuel Failure

ATOMEXPO 2012 International Forum «Nuclear Power Industry Worldwide: One Year After Fukushima». Round table: «International Cooperation in the Nuclear Fuel Cycle». Moscow, 6 June 2012

Driving to Zero Failure

The Memorandum between JSC «TVEL» and JSC «Concern Rosenergoatom» about intentions on carrying out joint actions for achievement of zero level of nuclear fuel failures is prepared for signing

Conclusion

- New FA designs
- New automated technologies of nuclear fuel fabrication
- Driving to Zero Failure

- Increase in safety and reliability of operation
- Increase in economical efficiency of fuel utilization
- Decrease in amount of spent fuel

Rise of competitiveness and social acceptability of nuclear power generation

