

NSR transit shipping - A risk based approach

Northern Sea Route: New Opportunities

Jan Kvålsvold, Det Norske Veritas, Director Moscow, June 2012

The drivers

30 year horizon: + 2 billion people

Demand for energy (2008 - 2035) – New Policy Scenario (IEA)

Source: IEA, World Energy Outlook - November 2010

Distribution of oil resources

Distribution of gas resources

The need for energy in Japan is critical

- Nuclear power used to represent 30% of Japan's power consumption
- 27% of world LNG imported to Japan (pre-Fukushima)
- Year-on-Year (January 2011-2012) import hike of 39%
- Last, of 54, nuclear power plant closed in May 2012

Fukushima March 2011

Japan shift in energy mix is dramatic

NSR transit shipping - A risk based approach Moscow, June 2012 © Det Norske Veritas AS. All rights reserved. Source: Federation of Electric Power Companies in Japan. The Washington Post. Published on April 7, 2012

LNG – a regionally disintegrated market

LNG landed price

NSR transit shipping - A risk based approach Moscow, June 2012 © Det Norske Veritas AS. All rights reserved.

Minerals in the north

- Commodity prices have increased
- Old sites become profitable
- Growth plans
- What about sea bottom minerals?

Store Norske

- VERDENS NORDLIGSTE GRUVESELSKAP

Source: http://www.nautilusminerals.com/s/Home.asp

NSR transit shipping - A risk based approach Moscow, June 2012 © Det Norske Veritas AS. All rights reserved.

The incentives

Why? -because it's shorter

Yokohama – Rotterdam is 40% shorter than Suez

NSR transit shipping - A risk based approach Moscow, June 2012 © Det Norske Veritas AS. All rights reserved.

Ice cap is melting – September ice extent

NSR transit shipping - A risk based approach Moscow, June 2012 © Det Norske Veritas AS. All rights reserved. September Ice Extent

EEZ Boundary

Source: http://www.oceansnorth.org/new-maps-melting-ice#

September Ice Exten

D International Waters

Current regulations in the Polar Region

Current regulations in Polar Water

Mandatory international conventions apply world wide:

- SOLAS Safety of Life at Sea
- MARPOL Prevention of Pollution From Ships
- AFS Anti-Fouling system
- BWM Ballast Water Management (Not yet in force)
- **Convention on Load Lines**
- STCW Standards of Training, Certification and Watch keeping
- COLREG Preventing Collisions at Sea

Voluntary guidelines especially for polar waters:

Guidelines for ships operating in Polar waters – adopted 2009, recommended to be used from 1. January 2011 IMO doc. A 26/Res.1024

National and Regional Regulations and Agreements

- Flag states (Administration)
- Coastal state requirements (UNCLOS 6mnds of ice)
- Classification societies
- The Antarctic Treaty Consultative meeting (ATCM)
- Arctic Council
- International and national standards and guidance
 IMO doc. DE 56/INF.2 Listing such standards

IMO Polar Waters Actions

- Developed new regulations prohibiting use of HFO in Antarctic waters entered into force in 1st August 2011.
- Working on measures to **reduce air emission**
- Extended the application of the 'Guidelines for operation in Polar water' to cover Antarctic as well
- Developed training guidance for officers on ships operating in the polar areas
- Started the development of a mandatory safety and environment protection code for ships operating in the polar areas – The Polar Code
 - The goal is to have the same level of safety for persons, environment and ships as in other waters

INTERNATIONAL MARITIME ORGANIZATION

NSR requirements

Examples of requirements

- Ice strengthening ACR4 approximately ICE-1A
- Tank and DB arrangement
- No bulbous bow
- Towing arrangement
- Engine and propeller requirements
- Waste handling
- Ballast tank heating
- Stability
- Icing and winterization
- Navigation

The role of Classification

International and Regional Regulations

Ownership is with the Administration and Local authority – NOT the class

DNV's core competence

identify assess manage

DNV position for cold climate

Total number of ships in class: 6200

Ice class ships in class: 1650 (28%)

ICE (ARC6) and POLAR (ARC8): 20

THE REPORT OF THE PARTY OF THE

Winterization: 70

What is RISK?

Are we prepared for the new risk reality ?

Understanding of risk may not be straight forward

Says Veritas in a report:

«In total, the environmental risk originating from an oil spill will be reduced in the area Lofoten-Barentshavet as a consequence of oil exploration activities there.»

Does this make sense?

Generally: RISK is a function of probability and consequence of a possible unwanted outcome

R = f(P, C)

Simplified: $R \approx P \cdot C$ (Important aspects can disappear)

What does the combination of probability and consequence mean?

RISK = PROBABILITY X CONSEQUENCE

CONSEQUENCE

How to reduce the RISK? - The "bow-tie" model

What are the additional Arctic risk elements?

P R O B A

BILITY

CONSEQUENCE

Risk = Probability x Consequence

Due to the Arctic Challenges:

- Low Temperatures
- Ice
- Darkness
- Operation
- Remoteness
- Environment

Are influencing the Risk picture (probability or consequence)

Example: Ice class ICE-1A (or ARC4)

ICE-1A is used as a preventive barrier to reduce probability for damage

Illustration of seasonal ice condition

NSR transit shipping - A risk based approach Moscow, June 2012 © Det Norske Veritas AS. All rights reserved.

ICE LOAD MONITORING (ILM)

A Norwegian Research Council funded project during the period 2006-2008

Goal: To provide the navigator with information about the actual ice load acting on the hull to avoid permanent damage.

Partners: •C-map Marine Forcast •Light Structures •Meteorological Institute in Tromsø •Norwegian Coastguard •Statoil •Teekay

What about Enterprise Risk?

And what about the Enterprise Risk?

- One company's accident can influence a whole industry
- Carnival stocks dived 18% first trading day, RCCL stocks dived 8%

Key take away

- Ship traffic in the Arctic is expected to increase
- Rules and regulations governing the arctic should be based on a risk management approach
- A joint industry project can assess the complete risk picture for arctic transit shipping

Safeguarding life, property and the environment

www.dnv.com

