

NUCLEAR POWER IN INDIA

K. Koshy Head NRRF Nuclear Power Corporation of India Limited (NPCIL) INDIA

NUCLEAR POWER CORPORATION OF INDIA LTD. (NPCIL)

A PUBLIC SECTOR ENTERPRISE UNDER THE ADMINISTRATIVE CONTROL OF DEPARTMENT OF ATOMIC ENERGY

Organisation

ATOMIC ENERGY COMMISSION

NPCIL - MANY COMPANIES IN ONE

- Siting
- Design
- Construction
- Commissioning
- Operation & Maintenance
- •R&M & Upgrades
- Life Extension
- Waste Management

INDIAN ENERGY SCENARIO

Fuel Shares in Electricity Generation

INSTALLED CAPACITY 271722.17 MW (As on 31.03.2015)

Source: Central Electricity Authority, GOI

Demand Projections

(based on 8% GDP Growth)

Year	Energy Requirement (BUs)	Peak demand (GW)	Required Installed Capacity (GW)
2017	1524	226	306
2022	2118	323	425
2027	2866	437	575
2032	3880	532	778

Source: Integrated Energy Policy, Planning Commission, Gol

By 2050, the required Installed Capacity is estimated to be 1300 GW

India's Energy Resource Base

	Amount	Electricity Potential [¤] GWe-yr
Coal	38-BT	7614
Hydrocarbon	12 –BT#	5,833
Uranium-Metal	61,000 -T	
- In PHWR		328
- In Fast Breeders		42,231
Thorium-Metal (In Breeders)	2,25,000 –T	155,502
Hydro	150 -GWe	69 GWe-yr / yr
Non-conv. Ren.	100 -GWe	33 GWe-yr / yr

a Assuming entire resource is used for generating electricity.

Currently known resources (including coal bed methane) are 3 BT.

Source: Strategy for growth of Electrical Energy in India – DAE, Gol

Meeting the Demand

- Optimal Deployment of all sources
- Emphasis on Nuclear Power for long term energy security & sustainability
- Setting up Nuclear Power Reactors based on
 - Indigenous Nuclear Power Programme
 - International cooperation

Indian Nuclear Power Programme

Indigenous Three-stage Programme

Additionalities

(LWRs with International cooperation)

Nuclear power plants in Operation & under Construction

Operating Nuclear Power Plants in India

TARAPUR 1&2 (2X160MW)

RAJASTHAN 1 to 6 (100+200+4X220 MW)

5780 MW

3380 MW under IAEA Safeguards

Experience in Construction of NPPs

Construction of Nuclear Power Plants in India remained alive over the last 45 years.

Simultaneous construction of 6 Reactors.

Vendors specializing in manufacture and supply of exacting standards equipment and supplies are developed.

Reactors under Commissioning

Same a

R. Minte

KKNPP - 2 (1000 MW) Expected completion - 2015-16

THE PARTY

-

Reactors under Construction

KAPP 3&4 (2X700MW)

Physical Progress – 64.6% (KAPP 3 – 71.0%, KAPP 4 – 57.26%)

Expected Completion 2017 / 18

RAPP 7&8 (2X700MW)

Physical Progress – 48.2% (RAPP 7 – 53.42, RAPP 8 – 42.18%)

Expected Completion 2018 / 2019

Bharatiya Nabhikiya Vidyut Nigam Limited

The 500MWe Prototype Fast Breeder Reactor is in the advanced stage of construction and is getting poised for commissioning. physical progress of 97.64 %

Sites for Future Projects

Projects to be implemented on twin unit basis, in phases at a site

Planned New Starts by 2017

Project	Location	Capacity (MW)				
Indigenous Reactors						
GHAVP 1&2	Gorakhpur, Haryana	2 x 700				
CMAPP 1&2	Chutka, Madhya Pradesh	2 x 700				
Mahi Banswara, 1&2	Mahi Banswara, Rajasthan	2 x 700				
Kaiga 5&6	Kaiga, Karnataka	2 x 700				
Reactors with Foreign Cooperation						
KKNPP 3&4 (Russian Federation)	Kudankulam, Tamilnadu	2 x 1000				
JNPP 1&2 (France)	Jaitapur, Maharashtra	2 x 1650				
Kovvada 1&2 (USA)	Kovvada, Andhra Pradesh	2 x 1500				
Chhaya Mithi Virdi 1&2 (USA)	Chhaya Mithi Virdi, Gujarat	2 x 1100				

GHAVP 1&2 and KKNPP 3&4 accorded financial sanction by the government and are being readied for launch in this year. Pre-project activities are in progress at remaining sites.

Future Plans

Start of Work Pre-Project Activities on

- 8 more indigenous PHWRs of 700 MW each
- 8 LWRs of 1000 MW or larger size based on international cooperation
- 2 Fast Breeder Reactors(500MW)
- To reach 63000 MW by 2032 based on indigenous reactors & LWRs with international cooperation

Considerations for Setting up LWRs

- Viable Tariff
- Progressive Indigenization to optimize Cost
- Cooperation between Indian Industries & Foreign Technology Partners
- Life time fuel supply guarantees

Our Experience in setting up LWRs

2 VVERs at Kudankulam (KK 1&2 – 2 X 1000 MW) 1 Unit commissioned and 2nd at advanced stage of commissioning

Implementation Model Role of Technology Partner

Design
Supply of Equipment
Evaluation of Personnel

Role of NPCIL

Construction Erection Commissioning Training

Training of Personnel

Phase-1 in India Phase-2 in Russia Phase-3 in India

Carried out in Three Phases

- : Induction in Nuclear Technology
- : Simulator and Technology Specifics
- : Commissioning and Systems operation

Evaluation by Technology Partners

Tour To KKNPP

KK 1 – 100%

-Commercial operation started in Dec 2014 -Cumulative Generation so far - 6500 MUs

KK 2 – 98.01%-Hot Run Completed-Criticality and synchronization to follow

A few glimpses

KKNPP

THEN

NOW

Technological Partnership Endeavour Kudankulam Nuclear Power Project 1&2

KK 1&2 Panoramic View

Unit-1: Criticality of Reactor on 13.7.2013

7 JUN 2014: KK-1 reached 1000MWe Power

Night view from the Sea

Intake & Break water Dyke Structure

View from sea

View from North

View of Turbine Generator

Control Room

Desalination Plant

View of KKNPP 3 to 4 area from KKNPP 1&2

Visit of Dignitaries

Visit of Dignitaries

Visit of Dignitaries

Preparedness for large Capacity Addition

- Sites made available Pre project activities in progress
- Augmentation of existing capacity & capability of Indian industry initiated
 - Joint Ventures / Consortia between Indian and foreign companies
 - Companies setting up manufacturing facilities being facilitated
 - Joint Venture Company between NPCIL & Indian companies

Structured development of human resources

The experience with the Training model adopted for KKNPP has been good. Same model is planned to be followed for each new technology.

Supply Chain

- Nuclear Island (NI)
- Balance of Nuclear Island (BNI)
- Conventional Island (CI)
- Balance of Conventional Island (BCI)
- Balance of Plant (BOP)

India - Future Nuclear Industry Hub

- Country having an alive small and Medium reactor technology with excellent safety and performance record
- Cost advantage with technology expertise of Indian industry
- Availability of Large pool of trained Human Resource

Conclusion

- India has a robust Nuclear Power Programme
- Stage is set for nuclear power capacity expansion to meet its huge electricity demand through indigenous technologies and with international cooperation
- India poised to be the future global nuclear industry hub

NPCIL Performance

Performance

- Excellent Safety Record
 - No accident or incident of release of radioactivity beyond stipulated limits in public domain
 - Radiation dose around nuclear power plants a negligible fraction of natural background
- Excellent Safety Culture
- High Plant Load Factors and Availability Factors, long continuous run
- Viable Tariffs
- Environment Protection
- Neighbourhood Inclusion

Safety

- **Excellent Safety** Record
 - No accident or incident of release of radioactivity beyond stipulated limits in public domain in over 45 years of operation
 - Radiation dose around nuclear power plants a negligible fraction of natural background
- **Excellent Safety** Culture

Deputy Team Leader

Team Leader

OSART Mission-2012 RAPS-3&4

Performance - Operation

- **Growing Generation**
- **High Availability Factors**
- **Increasing Plant Load Factors**
- Long continuous runs
 - RAPS-5 second longest in the world of 765 days

Continuous run of more than a year recorded by NPCIL's

Continuous runs longer a year (365 days) registered 18 times

2011-12

2012-13

2013-14

2014-15

R

2008-09

2009-10

2010-11

NPCIL Plant Load Factor (%)

Neighbourhood Inclusion

Healthcare

Education

Infrastructure

Sanitation – Toilets Swatch Bharat Abhiyaan

Skill Development

Public Awareness

- Structured action plan with monitoring mechanism
- Focus on Capacity building, Media, state officials, peoples representatives, students and faculty.
- Partnership with 21 Professional Agencies and Government organizations
- Multipronged Approach
 - Permanent Exhibition Centres
 - Single sheet publications
 - Short films
 - Radio jingles
 - TV Commercials
 - Digital Media Cinema & Cable TV
 - Comic Books
 - Animation Films
 - Web based Awareness
 - Press Meets
 - Visits to Plants
 - Briefing Opinion makers

Environment Stewardship - *Safety first Environment foremost*

Thank You