INTERNATIONAL FORUM ATOMEXPO 2018

State atomic energy corporation "Rosatom"

Operation of nuclear power plants in Russia today and tomorrow

Dementiev Andrey, Deputy CEO - Director for NPP production and operation, Rosenergoatom

Sochi, 14 May 2018

35 power units in commercial operation on 10 NPPs with a gross installed capacity
 27890 MW

power units at the stage of pilot operation (Rostov NPP Unit 4 Leningrad NPP-2 Unit 1)

- 6 power units under construction
 - floating power unit under construction

More than 34 thous. employees of Concern

Rosenergoatom is one of the largest power generating companies

Key performance indicators of NPP operation in Russia

Δ

Dynamics of events in operation of Russian NPPs

Automatic scrams per 7,000 operation hours in 2017 (WANO data)

Strategic goal is to keep leading role in the Russian Federation power balance

Construction of new units

Retaining generating capacities due to LTE

1BAL		1BIL	1KLN	1KOL	1KUR	1LEN		1ROS	1SMO
2BAL		2BIL	2KLN	2KOL	2KUR	2LEN		2ROS	2SMO
3BAL	3BEL	3BIL	3KLN	3KOL	3KUR	3LEN		3ROS	3SMO
4BAL	4BEL	4BIL	4KLN	4KOL	4KUR	4LEN	4NOV		
- L	.TE activitie	5NOV							
 LTE activities beyond 30 years are underway New units 									

Total power generation at power units following LTE in 2017 amounted to 121 Bln kWh

~60% of the total generation by the RF Nuclear Power Plants

The task of Rosenergoatom up to 2025 is to keep **6 power units** in operation with gross installed capacity **4297 MW**:

New units start-up

Beloyarsk NPP Unit 4

Up to date power unit with fast breeder reactor BN-800 (put into operation in 2016)

Novovoronezh NPP-2 Unit 1 Up to date power unit AES-2006 generation 3+ (put into operation in 2017)

Rostov NPP Unit 4

Generic power unit VVER-1000 (at the stage of pilot operation)

Leningrad NPP-2 Unit 1 Up to date power unit AES-2006 generation 3+ (at the stage of pilot operation)

NPP	Unit	Scheduled life time
Novovoronezh NPP-2 (design AES-2006)	No. 2	2019 -2079
Leningrad NPP-2 (design AES-2006)	No. 2	2020 - 2080
Kursk NPP-2 (design VVER-TOI)	No.1 No.2	2023 - 2083 2024 - 2084

Floating nuclear power plant in Pevek (to be put into operation in 2019)

Characteristics of Floating Power Unit

Length / width, m	140 / 30
Draft, m	5,6
Displacement tonnage, t	21 500
Electric power, MW	2x38,5
Thermal power, Gcal/h	50

Further development of safety culture

Safety goal modernization

Reactor plant uprate

Advancement of fuel cycles

Maintenance technology improvement

Further development of safety culture program

personnel

Dynamics of violations related to the human factor

Modernization of systems and equipment

Restoring of life characteristics of graphite stack of the RBMK-1000

	2013	2014	2015	2016	2017	2018	2019	2020	2021
1LEN	RLC-1 (R&D)		RLC-2	RLC-3	RLC-4	RLC-5			
2LEN		RLC-1		RLC-2	RLC-3	RLC-4	RLC-5	RLC-6	
3LEN						RLC-1		RLC-2	
4LEN							RLC-1		RLC-2
1KUR				RLC-1		RLC-2		RLC-3	
2KUR		RLC-1		RLC-2	RLC-3	RLC-4		RLC-5	
3KUR							RLC-1		RLC-2
4KUR								RLC-1	
1SMO								RLC-1	
2SMO									RLC-1
3SMO									

– complete RLC

The increase of operational efficiency. The increase of thermal power of VVER-1000

2018	Start of power testing 107% Nom
2020	Pilot operation during 2 campaigns
2022	Change-over to commercial operation

The increase of operational efficiency. Change-over of VVER-1000 power units for 18-month fuel cycle operation

NPP, Unit	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Balakovo NPP, 1	409	-	444	424	503	-	491	515	-	503
Balakovo NPP, 2		461	-	501	503	-	486	473	-	487
Balakovo NPP, 3		451	496	-	463	512	-	519	506	-
Balakovo NPP, 4		420	488	476	-	483	521	-	503	-
Kalinin NPP, 1									502	-
Kalinin NPP, 2				436	486	-	505	522	-	505
Kalinin NPP, 3			481	493	-	429	489	-	528	-
Kalinin NPP, 4						419	490	-	474	515
Rostov NPP, 1			332	439	521	-	498	496	-	502
Rostov NPP, 2					274	250	457	527	499	-
Rostov NPP, 3							478	-	477	-

- 18-month fuel cycle operation
- Change-over loads of 18-month fuel cycle

The duration of the work is given in days. At the top - the year of the start of campaigns of the specified duration

ROSATON

The increase of operational efficiency. Change-over of design AES-2006 power units for 18month fuel cycle operation

12-month fuel cycle (4x1) was substantiated and implemented for design AES-2006 (WWER-1200) units

Perspective up to 2022:

VVER-1200: sustained and change-over for 18month fuel cycle

Decisions made to change-over for 18-month fuel cycle

	FUEL CYCLE									
	I	Ш	Ш	IV	V	VI				
6NOV				2020 г.						
7NOV			2021 г.							
5LEN			2020 г.							
6LEN	2020 г.									

Digital Template for NPP Operation

COMMISSIONING OF NEW POWER										
4RST VVER- 1000	C	~	10,7 GW							
5LEN VVER- 1200	7NOV VVER- 1200	6LEN VVER- 1200		1KUR-2 VVER- TOI	2KUR-2 VVER- TOI	7Len VVER- 1200	8Len VVER- 1200		1SMO-2 VVER- TOI	
2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	
	1LEN RBMK- 1000		2LEN RBMK- 1000	1KUR RBMK- 1000		2KUR RBMK- 1000	3LEN RBMK- 1000	4LEN RBMK- 1000	~ 6,6 GW	
	1BIL GR-12			2-3BIL GR-12				3BEL BN-600		
				4BIL GR-12						

POWER UNITS DECOMMISSIONING

JSC "Concern Rosenergoatom" is the reliable international partner at all stages of the NPP life cycle

Dementiev Andrey

Deputy CEO – Director for NPP Production and Operation, Rosenergoatom +7 (495) 787-28-24

aadementiev@rosenergoatom.ru

www.rosenergoatom.ru

