

FEDERAL STATE UNITARY ENTERPRISE

ALL-RUSSIAN SCIENTIFIC RESEARCH INSTITUTE OF AVIATION MATERIALS STATE RESEARCH CENTER OF THE RUSSIAN FEDERATION

Experience of FSUE "VIAM" in the field of hightemperature alloys powder metallurgy and additive manufacturing applied to GTE structural parts

Speaker: Head of Research Group Dmitry Suhov

Implementation levels of additive manufacturing

Materials and additive manufacturing for GTE parts and components

Additive full cycle production:

Development of metal powder compositions, 3D models, construction of support structures, development of synthesis technology parameters (laser power, laser scanning strategy, speed and hatch spacing), followed by heat treatment and hot isostatic pressing of critical parts with the release of a complete set of regulatory documents

Manufacture of charge billets (VIM-150) and blanks for atomization (VIM-12)

Production of metal powder compositions by gas atomization

Sieving and gas-dynamic separation of powders

Final part

Development of 3D models of parts Support structures modeling, generation of layers

Development of laser synthesis technologies: laser power, laser scanning strategy, speed and

hatch spacing

Heat treatment and hot isostatic pressing

Quality control and characteristics measurement

The created infrastructure allows us to develop technologies in a short time and produce parts that meet the requirements of regulatory documentation (level 3)

Materials for domestic SLM and DMD machines

The view of the metal powder compositions workshop for additive production (2018) VIP-GR atomizer is designed using digital technologies and manufactured in FSUE "VIAM" HERMIGA JW-150 10/100V2018 year 2017 year June 2010 year 2017 year Steels: X18H10T (18-10), ВНЛЗ (316L) Production of direct domestic Alloys: XK62M6Л (CoCrMo MP1); ЭK61 (Inconel718); АЛ4 analogues High-temperature nickel alloys: **ЭΠ648; BЖ98; BЖ159** and etc. Aluminum alloys: Д16, 1933 and etc. **Steels:** Martensitic Aging (**ВКС 240, ВНЛ14** and etc.) **Production of original alloys** Cobalt alloys: BЛK1 (CoCrNiW) Titanium alloys: BT6, BT20св, BT18л, TiAl - Equipment development - Development of materials (VIAM)

Application of the materials being developed (selective laser melting technology)

AM for gas-turbine plant

New material for 2nd stage blades of high-pressure section

Novel Cobalt Alloy ВЛК1(VLK1)

Heat shield

Gas collector ВЖ159 (VJ159) Alloy

General qualification of the novel domestic alloys for additive manufacturing (2018-2019)

СО-BASED ALLOY (ВЛК1))	TI-BASED ALLOY (BT6)						6)
As-build				A	As-trea		I∆ ктивных ∆ований				6	10,4 10,2 10 9,8 9,6 9,4		Coefficient of thermal expansion
	Ter	nsile test,	20°C	σ ₅₀₀ ⁸⁰⁰ ,	σ ₁₀₀	⁸⁰⁰ , σ ₁₀₀	0 ¹¹⁰⁰ ,	_мит ``				9,2 0 200 400 600		
Alloy	σ _в , MPa	σ _{0,2} , MPa	δ,%	MPa	MF		IPa		Tensile test, 20°C		τ _{cp} ,		KCU,	
ВЛК1	1410	1040	12,5	180	22	0 2	25	Alloy	σ _в , MPa	σ _{0,2} , MPa	δ,%	MPa	HRC	J/cm²
MP1 (EOS)	1000- 1200	550-650	≥20	-	-		-	Ti-6-4	1060- 1110	990-1030	7,1- 13,0	710-760	37-38	26-31,6
The issu	The issue of certification document - in 2019 The issue of certification document - in 2018													
сталь σ _в , σ _{0,2} ,			δ ₅ ,%	ψ , %	KCU,	K _Q ,	σ ⁵⁰⁰ ₁₀₀ , STAINLESS STEEL (BHJ				ВНЛ14)	114)		
02X13H5К9 (ВНЛ14)		MPa 1480- 1520	MPa 1340- 1350	14,5- 17,5	63- 65	J/см ² 100- 110	МРа∙м [°] 155-17			0,8 0,7 - % d untron 0,6 -	Fatigue at 500 °C.			
PH1 (EO		1310- 1470	1350 1170- 1350	10-14	-	-	-	TEM		чфофа 0,5 - Чти и и и и и и и и и и и и и и и и и и		a a		XY
The issu	le of	certifi	catio	n docu	ment	t-in 20	019	<u>1 µ</u> m	19	0,2	,	5000 Число	циклов п	xz

Prospects of using AM in the manufacture of GTE combustion chambers

		ombustion nanufactu traditi technol	onal Notes	
	Lightweight c chamber man using SLM tech reduced wall t to 0.81	nufactured mology with hickness up		
Operation	Duration		Operation	Duration
Manufacturing of equipment and accessories for stamping and welding	2 months	F	Preparation of the electronic project	1 day
Preparation and processing of sheet blanks (cutting, burning holes, rolling)	15 days	Sel	ective laser melting of the combustion chamber in one process	7 days
Assembly of the combustion chamber, welding of the basic component and oriented segments (at least 30 blades)	15 days		ocessing (heat treatment and hot isos ssing, removal of supporting structures reduction of roughness)	
Product control	3 days		Product control	1 day
General manufacturing cycle: Traditional way - 3 months SLM technology - less than 2 weeks 			Advantages of SLM: educe of manufacturing time by ity of lightweighting and improv	

The list of priority national standards developed within the framework of TC182

Order of Rosstandart No. 1013 dated September 1, 2015 established a technical committee TC 182 "Additive manufacturing " for the standardization on the basis of FSUE "VIAM"

1. Additive technological processes. Basic principles - part 1. Terms and Definitions

2. Additive technological processes. Basic principles - part 2. Materials for additive technological processes. General requirements.

3. Additive technological processes. Basic principles - Part 3. General requirements.

4. Equipment for additive technological processes. General requirements.

5. Additive technological processes. Basic principles - Part 4. Data processing.

6. Materials for additive technological processes. Methods of control and testing.

7. Additive technological processes. Methods of control and testing.

8. Products obtained by the method of additive technological processes. Terms and Definitions.

9. Products obtained by the method of additive technological processes. General requirements.

10. Products obtained by the method of additive technological processes. Methods of control and testing.

10 NATIONAL STANDARDS are issued 3 PROJECTS are discussed and sent for approval **4 DRAFT** national standards are in development