Manufacturing Market Challenges

CHALLENGE

COMPLEX GEOMETRIES & FUNCTIONAL INTEGRATION

Today's components have to perform increasingly complex functions requiring close integration of new materials, mechanical and electronic capabilities

Barrier: Designing integrated systems requires new manufacturing technologies beyond today's conventional possibilities

CHALLENGE LOW QTY + HIGHLY DIFFERENTIATED MFG

Today's manufacturing needs rely on variable short term production planning with high customization requirements

Barrier: Mass manufacturing methods have shortfalls in efficiency in order to deliver on these new manufacturing requirements

CHALLENGE

Optimization of weight and performance in a cost competitive framework. Weight optimized designs with balanced stress distributions increase energy efficiency and performance

Barrier: Ensuring maximum performance with minimal material is mostly limited by design tool capabilities and manufacturing process constraints

Additive manufacturing technologies – an integral part of the Industry 4.0

Enhanced geometric freedom

Fully optimized performance

Shorter innovation cycles

Customization made easy

Shorter supply chain

Driving new business models

When does AM become a mainstream manufacturing technology?

AM is helping to drive weight and efficiency optimization and reduce cost

Advantages of AM

Faster time to market — AM provides a fast track from concept to production, where complex objects can be manufactured in a single process step.

Optimized design and high complexity – AM allows highly complex designs in new geometries and materials to be developed.

Shorter innovation cycles – Innovations are designed, developed and tested more rapidly, eliminating the need for expensive and time-consuming part tooling and prototype fabrication.

Performance enhancement – AM manufactured parts can be designed with new properties, features or materials to improve performance.

Elimination of production steps – AM lowers cost of manufacturing by reducing outlay on high-value materials and shortens lead time.

Perfect for mass customization – AM's flexibility and customization at low unit costs make AM optimal for small production batches and mass customization of components and parts.

Less waste — AM allows for the efficient use of materials where material needs and costs can be reduced by up to 90%. No more scrap needs to be disposed of, and it requires fewer tools, molds and fixtures, saving resources.

Shorter supply chain – AM makes it possible for production to be done near the final destination, which leads to savings through reduced sub-suppliers, transportation and warehousing.

New business models — Parts or entire products can be built on demand that has enormous implications on how manufacturers design, build, and sell their goods.

Tasks to be solved

AM have a great potential, in order to accelerate the introduction of additive production processes, it is necessary to reduce the impact of the following factors:

Size restriction: the size of the parts produced depends on the size of the camera of the machine

Print speed: long time printing process

Software: most existing CAD programs are designed for traditional production methods - it is necessary to create a new complex software

Materials: expand the range of materials for AM and optimize their properties

Standardization: the development of international standards and their unification, enabling AM to move forward

Skills: too few experienced specialists and trainings on additive production techniques

Automation: the lack of automation of the AM

The solution of the set tasks for Additive Manufacturing is the main condition of Industry 4.0

Oerlikon Group Global Industrial Leader

AM Market Needs & Solutions

ærlikon am

Aerospace Case Study Antenna Bracket For Sentinel Satellites

Original Scheme

- Weight: 1.626kg
- Frequency: 88.7Hz
- Manufacture: Sheet metal fabrication
- Material: Aluminum

Optimized Scheme

- Weight: 0.96kg
- Frequency: 88.7Hz
- Manufacture: AM
- Material: AlSi10Mg (Aluminum)
- RUAG & Oerlikon partnered in Engineering, Materials and Production to develop application through Test & Qualification for space flight
- Final iteration provided ~40% weight saving whilst maintaining frequency (88.7Hz)
- No fabrication tooling required
- Lead time greatly reduced

Aerospace Case Study Antenna Bracket For Sentinel Satellites

Aerospace Case Study Turbo Pump: Turbine Rotor for Low Earth Orbit launchers (LENA Space)

Original Scheme

- Current Manufacture multi-part fabrication, separate blades
- Performance constrained due to assembly and multiple different thermal expansion
- Material: Aluminum, Steel, Inconel
- Q2/18 enters test program to run the rotor at 11,000rpm
- Partners include ESA and Lockheed Martin
- Oerlikon AM Engineering, Material Science and Coatings reduced the original design from 150+ parts down to 1
- Concept to 1st article 6 weeks

Optimized AM Scheme

- AM permits single part consolidation
- Design un-constrained for performance and reduced packaging (smaller design envelope)
- Material: IN718 and high performing coatings

Aerospace Case Study 3D AM RF Antenna

Original Scheme

- Manufacture permits 2D Radio Frequency (RF) elements
- Design constrained for manufacture
- Manufacture: Multiple fabrication and lead time
- Material: Aluminum

'Generic' AM antenna horn

Optimized AM Scheme

- AM permits 3D RF elements
- Design un-constrained for performance
- Manufacture: AM
- Material: AlSi10Mg (Aluminum)
- AM enabled design provides superior performance with multi-planar emission capability
- Integral circuit board cooling
- Highly customized performance for mechanical and thermal requirements
- <1/3 cost of conventional component and 10X improvement in lead time</p>

Aero&IGT Case Study Gas Turbine Blades

Challenge

protective Thermal Barrier Coating
Apply Non-conventional machining & Heat treatments

Provide a printed turbine blade with

- Reduce time to testable component
- Oerlikon part design, additive manufacturing NCM of fir tree and heat treatments

Solution

Impact

- Oerlikon coatings for reduced erosion, corrosion and high temp exposure
- Synova Laser MicroJet[®] (LMJ) drilling of cooling holes & diffusors through nonconductive coating
- In-house production of all materials
- Simplified supply using one stop shop
- Cost & time production
- Shorter time to testable component

œrlikon

Page 11

Aero&IGT Case Study Seal Segment For Gas Turbine

œrlikon am

HVOF intermediate bond coating to

applied using plasma increase coating spray strength Material: Metco 204NS

Material: Metco 4199

3D diamond grid

Base of segment seal made by PBF applied to enable heat process. transfer using laser embedding seal cladding process slots normally requiring additional Material: Metco 4199 EDM Material: Ni-Alloy 718

Thermal barrier coating

Metallurgical

expertise

AM application

expertise

Supplier

integration

Effective

timetable

Cost optimization

Provide a seal segment with 3D structured seal and Thermal Barrier Coating

Challenge

- Simplify the supply chain
- Reduce time to testable component

Solution

- Oerlikon completed part design, build, post processing using in-house materials
- Quick and effective turnaround of prototype component for testing

- In-house production of all materials

- Impact

AM in Aerospace – Industry Examples

- Aerospace AM market is estimated to be ca. EUR 1B, according to Roland Berger consultancy, but includes materials, AM machines and services.
- Components have focused on lightweight parts with complex geometries e.g. small Ti aerostructure components, turbine • components.

Adoption drivers:

- Increasing efficiency requirements improved materials and manufacturing processes e.g. Flightpath 2050 carbon emission targets.
- Increasing design confidence data sets for alloys being developed to enable engineers to design parts for AM.
- Increasing regulatory acceptance Airworthiness authorities have approved for production and service components such as GE's fuel nozzle.

Flightpath 2050: carbon emission targets

Space

Valve

Page 13

- Space X Main Oxidizer
- Higher strength, ductility and fracture toughness.
- Printed in Inconel Nibased superalloy
- Printed in less than 2 days vs months for casting
- Qualified to fly interchangeably with cast parts on Falcon 9.

Aero engines

MTU Aero Engines -**Borescope Eyepiece**

- Printed in Inconel 718 -Ni-based superalloy
- Qualified for aero engines and in-service today.
- Substitution of a casting
- MTU predict that by 2030 a typical narrow body engine will contain 15% of AM parts
- Weight reduction of 100kg per engine possible.

Airframe

Airbus – A350 bracket

Titanium bracket printed engine pylon

œrlikon

am

- Fitted onto an in-series production A350 XWB in 2017
- Builds on experience gained with first SLM and EBM parts for FADS satellites

Source: Roland Berger, Space X, MTU Aero Engines, Airbus

Oerlikon AM

we are disruptors

Thank you.

