

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Betavoltaic Power Source based on Nickel-63 Isotope

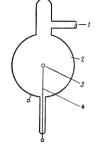
Speaker: Mokrushin Andrey

15-16.04.2019 Sochi

Basic Premises for Modern Development of Nuclear Batteries

Distribution. Each element has its own power supply.

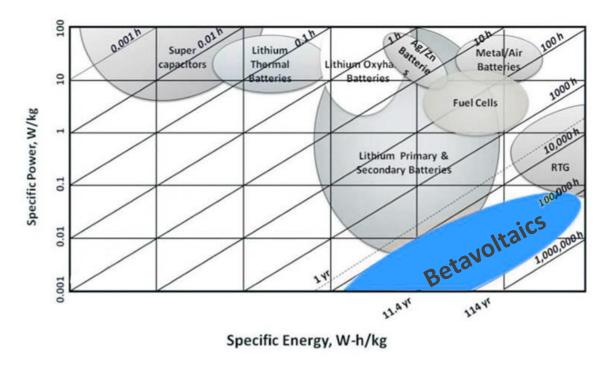
Service life comparable to that of the device (from several months to decades



Henry Moseley (1887-1915) is the creator of the first vacuum β - voltaic cell in 1913

Miniaturization

Self-sustainment. Independence of external power sources



Operability in a wide temperature range.

Moseley's Beta-Cell

Why the β -voltaics

• Power sources with β excitement (Ni-63; T; Sr-90, Pm-147) take the lead in the energy stored $3 \times 10^5 - 2 \times 10^7$ W·hour/kg.

- In terms of specific power, 100
- 10000 W/kg capacitors are unsurpassed.
- Combining the functions of the capacitor and self-charger in a single device provides an opportunity to create a nextgeneration power source.

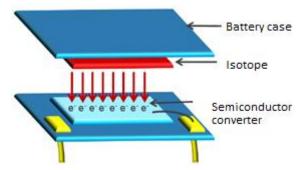
Applicable for:

Medical technologies

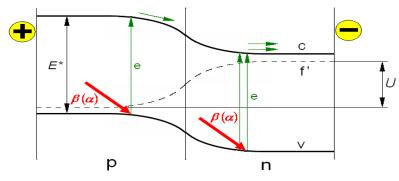
Cardiac stimulators; Neurostimulators; Biosensors and analytical systems-on-a-chip; Life support systems. **U** = 5-15 V; **I** = up to 80 mA (implants); **P** = 400-1200 mW;

Submersible and surface; Subterranean; Space; Geological; Detectors of radiation and substances

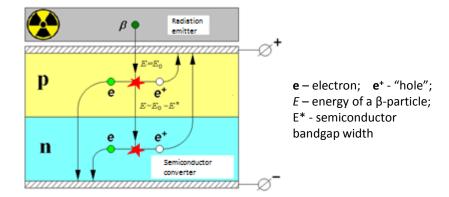
Micro- and nanoelectronics


MEMS, NEMS; Low power consumption microchip systems; Power-independent memory. **U** = 0.5-2.5 V; **I** = 50-300 nA; **P** = up to 0,75 μW;

U = 2.5-3.5 V; **I** = up to 4 mA; **P** = up to 12 mW;


Promising Areas of Application

Industrial Internet of Things Portable devices β **Implanted devices** Self-sustainable systems


Schematics and Principle of Operation of the Betavoltaic Power Source

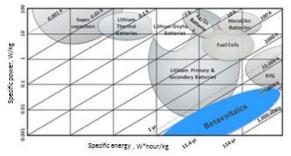
Schematics of a betavoltaic power source

Energy diagram for the p-n junction

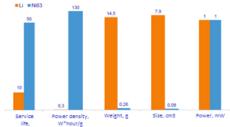
Formation of excess carriers near the p-n junction

Состояние разработок бета-вольтаических элементов

Производи тель	Тип источника	Источник ионизирующе го излучения	Тип преобразов ателя	Выходное напряжен ие, В	Выходной ток, нА	Выходна я мощност ь, мкВт	кпд, %
WIDETRONIX	Firefli-T	Тритий	SiC	2-6	-	0,010 -1	1-5
WIDET	Firefli-N	Никель-63	SiC	2-6	-	0,005-0,5	1-5
& CITY LABS	28–Pin ERDIP	Тритий	GaAs	0,8-2,4	50-350	-	1-3
	LCC 44	Тритий	GaAs	0,8-2,4	50-350	-	1-3
00	LCC 68	Тритий	GaAs	0,8-2,4	50-350	-	1-3
X BetaBatt	Trench 2/6	Тритий	Si	4,5	-	0,1-0,5	1-5
	Trench 1/4	Тритий	SiC	4,5	-	0,4-0,6	1-5
	Film-Jelli-Roll	Тритий	AIN	4,5	-	-	1-2
	Trench 1/4	Никель-63	SiC	4,5	-	0,09	1-2


Competitive Solutions. Comparison with the Counterparts

Competitive solutions


- Chemical power sources.
- Their service life doesn't exceed 10-12 years;
- Low stored energy per unit weight (W*hour/kg);
- Narrow operation temperature range (-20; 60 °C);
- Limited number of charge/discharge cycles (~1500), self-discharge.
- Batteries based on alpha emitting isotopes.
- Direct conversion of the energy of alpha-particles is virtually impossible;
- Pu-238, Am-241 emit neutronic radiation as per (α, n) reaction;
- They are toxic.

Comparison with the counterparts

- Batteries based on beta-emitters (tritium)
- Half-life 12.3 years insufficient service life;
- Low energy of the beta-particles results in low power specifications;
- Being a gas, tritium is not as well adaptable for production as metals www.sialuch.com

Comparison with Li-ion batteries

Radiation Emitter. Definition of the Optimal Parameters

Utilization of alpha- and beta- radioactive nuclides was considered for the power source. These nuclides were to meet the following requirements:

- The half-life is to exceed the specified service life of the power source;
- The penetrating gamma and X radiation concomitant with the nuclide's decay should be minimal;
- The emitted charged particles should not cause significant radiation-induced disruption in the semiconductor materials employed.

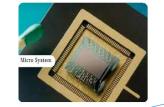
	Half-life, years	Specific weight, g/cm3	Specific activity, Bq/ cm ¹ .10 ¹⁰	Type of decay	Energy of decay E, MeV			
lsotope					Alpha	Beta	Gamma	Specific powerwy, Wiom ¹ s
Cadmium-113m	14	8,6	7637	β	-	0,19	~	2,3
Cesium-137	30	1,90	618,6	β		0,19	-	0,19
Nickel-63	96	8,902	1975	β	-	0,17	0,0048	0,54
Lead-210	22	11,34	3230	β	-	0,038	<0,001	0,2
Radium-228	5,8	5,5	5698	β	-	0,017	-	0,36
Samarium-151	90	7,52	549	β	-	0,020	-	0,017
Strontium-90	29	2,54	1315	β	-	0,20	~	0,42
Tritium (H	12	9.10-5	326-10-5	β	-	0,005	-	26.10-4 for gas

Parameters of the long-lived radio-nuclides

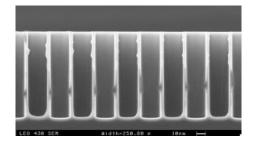
Nickel-63 radioisotope is the most promising beta-emitter. Its half-life is ~ 100 years, mean energy of the beta-particles is 17 keV. The optimal thickness is 2 microns at most.

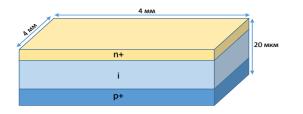
Establishment of Production of Long-Term Service Current Sources

The experts of JSC "PA ECP" have been the first in the world to develop and implement the fabrication process of gas centrifuge enrichment of nickel by ⁶³Ni isotope.


In 2018 a pilot batch of the products with an enrichment of over 69% was fabricated. The products were delivered to the Customer – FSUE "MCC". They will be used for development of long-term service current sources – service life of up to 50 years.

Production of nickel with an enrichment of over 80% by ⁶³Ni has been scheduled for 2020.





Nickel-based current sources of long-term service (up to 50 years) outperform the modern lithium ion batteries by a factor of tens.

Beta-Radiation Converter

Макропора Крекений в -тип Слой Ni-63 (голшина 2 мкн) 1A Ла р-в перелод Ласторованный слой р-типа (голшина 2 мкн)

The short-circuit current is defined by the intensity of formation of the electron-hole couples, and the open-circuit voltage is defined by the features of the rectifying contact, in particular, by the bandgap width and the crystallography of the semiconductor.

The following beta-radiation semiconductor converters (BRSCC) are proposed for development and production on the basis of:

- Silicon (Si) 3D structures with a developed surface (slit-type)
- Thinned-out diamond (C) converters
- Honeycomb structure of aluminum nitride

Participants / Expertise

Production and enrichment of Ni-63 JSC "PA ECP"

- Reactor for working gas production
- Gas centrifuges
- Apparatuses for radiochemical purification
- Mass-spectrometers

- Chemical and
 electrochemical equipment
- High-temperature furnaces (vacuum, argon, oxygen)
- Rolling machines

Production and studies of beta emitters

FSUE "SRI SIA "LUCH"

- Electrophysical test benches
- Systems for deposition of coatings (sputter deposition, cathodic arc deposition)

Development and studies of BRSCC, commutation and assembly of the specimens FSUE "SRI SIA "LUCH", FSBI TISNCM, BIAPOS

- Equipment for growing of monocrystals
- XRD and materials science studies
- Scanning probe microscopy (SPM) and scanning electronic microscopy (SEM)
- Apparatus for ion-plasma alloying
- Apparatus for molecular-beam epitaxy
- Apparatus for selective etching

Before 2020 specimens of betavoltaic power sources of various designs are going to be produced and tested. Their specifications are going to be as follows:

Laboratory test specimens: Power of the electric generating element not less than 1.0 μ W; Power reduction in the temperature range of 0 to 60 °C not exceeding 10 %; Nominal voltage output of the electric generating element: Uo = 1.8 – 3.0 V.

Test specimens:

"Type 1": Power Po not less than 5 μ W. Volume of the electric generating element (Vo): not exceeding 0.085 cm³. "Type 2" : Power Po not less than 60 μ W Volume of the electric generating element (Vo): not exceeding 1.0 cm³.

Area of Application of the Project Results

The results can be applied for the needs of:

- Space industry. The Space Research Institute of the Russian Academy of Sciences is interested in the development and provides support for the Project;
- Space, rocket and aviation engineering (in particular application for autonomous power supply of the on-board equipment);
- Automatic control systems of the special-purpose equipment (JSC "TSNIITOCHMASH" (State Corporation "RosTech") is interested in the development and provides support for the Project);
- Equipment for medical application (cardiac stimulators and neurostimulators)

