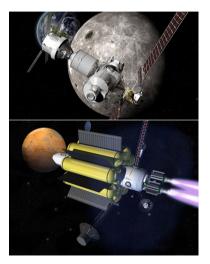
ATOMEXPO-2019

Plasma Thrusters for Space Transport

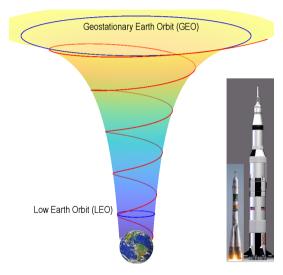
A.D.Beklemishev

Budker Institute of Nuclear Physics SB RAS, Novosibirsk


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Things to do in space

- Satellite servicing and orbit cleaning
- Base on the Moon
- Manned missions to Mars and other planets
- Asteroid capture and mining, etc.



Why are these projects still on paper?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

We live at the bottom of gravitational well

Lifting loads in space is expensive

- Payload to LEO: >3000\$/kg
- Payload to GEO: >12000\$/kg
- Fuel for interplanetary missions has to be lifted too...
- Asteroid mining is not cost-effective

Radiation above LEO is severe

- Low orbital satellites and the ISS are partially shielded by the Earth magnetosphere;
- Manned missions above LEO cannot last too long, less than 1-3 months, due to radiation.

3

What is needed for space flights

Jet engine

The engine thrust is

 $F = \dot{m}U$

where \dot{m} is the propellant use rate (kg/s), and U is the exhaust velocity.

Power source

We need power to accelerate the propellant: $W \ge \dot{m}U^2/2$, so that

$$U \leq \sqrt{2W/\dot{m}}$$
 and $F \leq 2W/U$

Jet propellant

Tsiolkovski formula for the attainable spacecraft velocity:

$$V = U imes$$
 In $rac{m_{
m p} + M}{M}$

where M is the spacecraft mass and m_p is the needed mass of propellant.

Properties of chemical fuels

- + Very convenient two-in-one: power source and propellant;
- Low exhaust velocity: U < 4.5 km/s.

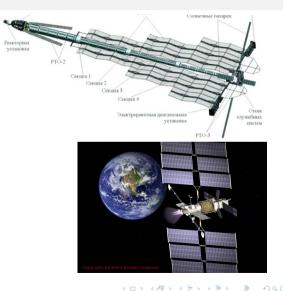
ヘロマ 人間 マイヨマ ヘヨマ

Electrojet propulsion

Electromagnetic acceleration of propellant

- + Exhaust velocity can be high and variable, $U \sim 10 100$ km/s;
- Needs electrical power source
 - Nuclear
 - Solar
- Very low thrust at moderate power levels (F < 1N/10kW)
- There are power losses for ionisation
- Best propellant (Xe) is rare and expensive

Power sources

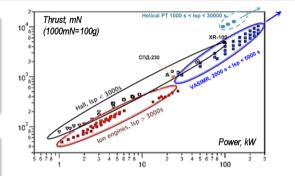

Nuclear

- + Nuclear energy content is high;
- Reactors are heavy;
- Conversion to electricity requires cooling panels;
- Need radiation shielding.

Solar

- + Clean, cheap, renewable;
- Area of solar panels ($\lesssim 1kW/m^2$).

Solar power is optimal for small spacecraft, manned missions to planets need nuclear power sources.


Engine thrust and propellants

Exhaust velocity

- Low engine thrust increases travel time;
- High exhaust velocity reduces thrust, optimum is at $U \sim 30 50 \ km/s$;

Thrust: $F = 2(W - W_{loss})/U$

- $W_{loss} = \dot{m}I/\mu$, where *I* is energy loss per atom, and μ is the atomic mass;
- Heavy and chemically inactive gas (Xenon) is the optimal propellant;
- Using lighter propellants requires lower / (partial ionization).

- Existing electrojet engines (W < 200kW) generate thrust only up to 10N=1kg;
- Manned interplanetary missions need W > 10MW.

Main electrojet types

Electrothermal

• Arc discharge or RF heating

Electrostatic

- Gridded ion thrusters
- Hall effect thrusters (SPT and TAL)

Electromagnetic

Acceleration can be based on:

- Heating + magnetic nozzle effect (VASIMR, Helicon, etc.)
- Ampere force (MPD, КСПУ, etc.)
- RF ponderomotive force...

lon thruster

Hall plasma thrusters

SPT (by OKB "Fakel")

- More than 250 launched;
- Orientation and orbital support of satellites and small spacecraft;
- Five types, up to 25kW/1N.

Rocketdyne XR-100 (100kW)

• The largest SPT (in development).

TAL

- Should be capable of higher power and lifetime;
- Cannot exceed SPT yet.

SPT-140

Development level Power Discharge voltage Thrust Specific impulse Efficiency Lifetime Mass Dimensions

QM **FAKEL** 3000 / 4500 W 300 V 193 / 290 mN 1680 / 1770 s 50 / 55% >9000 h 8.4 kg 317×270×109 mm

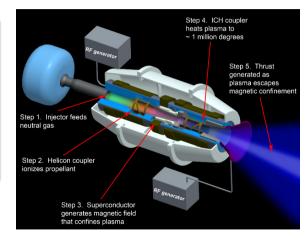
Coaxial plasma engines

MPD-type thrusters

- High-power discharge, pulsed or continuous;
- Very high erosion / low lifetime.

Coaxial high-current plasma thruster (КСПУ)

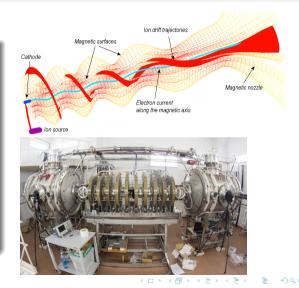
- Very high power (up to 10MW) / designed for higher lifetime;
- Experimental devices in Troitsk and Kharkov are used as plasma-jet sources;
- No 10MW power sources in space...



VASIMR plasma engine by Ad Astra Co, USA

In development:

- High-power (100kW up to 10MW);
- Variable exhaust velocity;
- Can work with argon;
- Electrode-less design: durable, with low erosion rates;
- Requires hi-tech superconducting magnets and RF generators.


Development stage is close to test flights of 100kW version in space.

Helical plasma thruster (BINP, Novosibirsk)

In development with OKB "Fakel":

- MW-class/variable exhaust velocity, similar to VASIMR;
- New, screw-pump-like plasma acceleration mechanism;
- Can (potentially) work with diverse propellants at low ionization (such as pulverized asteroids);
- Early research stage of development, working principle is experimentally tested in SMOLA device.

Introduction	Electrojet propulsion	Engine types	Plasma engines
Conclusion			

New nuclear and plasma technologies for space transport are in development. They can open up a new era of exploration and resource extraction in space.

